Estimating Excavation

by Deryl Burch
For Maudie, Morgan and Dad

In memory of Mom

A tribute to Grandma Hamn

Looking for other construction reference manuals? Craftsman has the books to fill your needs. Call toll-free 1-800-829-8123 or write to Craftsman Book Company, P.O. Box 6500, Carlsbad, CA 92018 for a FREE CATALOG of over 100 books, including how-to manuals, annual cost books, and estimating software. Visit our Web site: http://www.craftsman-book.com

Library of Congress Cataloging-in-Publication Data

Burch, Deryl
Estimating excavation / by Deryl Burch.
p. cm.
Includes index.
1. Excavation -- Estimates. I. Title.
TA730.B87 1997
624.1'52'0299--dc21 97-26971
CIP

©1997 Craftsman Book Company
Fourth printing 2007

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
Contents

1 Get Started Right
 - Why calculate quantities?
 - Reading plans and specifications
 - Accuracy is essential
 - Record keeping

2 The Site Visit
 - Review the plans first
 - Make the visit productive
 - Site visit for a sample project

3 Properties of Soils
 - Soil testing
 - Soil classifications
 - Soil characteristics

4 Area Take-off by Plan and Profile
 - Cut and fill sections
 - Understanding surveys
 - End area calculations
 - Calculating the volume

5 Reading Contour Maps
 - Planimetric and topographic maps
 - Understanding contour lines
 - Locating unmarked points
 - Monuments and bench marks

6 Area Take-off from a Topo Map
 - Comparing the contour lines
 - Estimating with a grid system
 - Doing the take-off
 - Calculating cut and fill areas
 - Using worksheets in a take-off
 - Shortcuts for calculating quantities
 - The equal depth contour method

7 Irregular Regions & Odd Areas
 - Finding area using compensating lines
 - Finding volume using total area and average depth
 - Using compensating lines with a coordinate system
 - Using the trapezoidal rule

8 Using Shrink & Swell Factors
 - Soil states and their units of measure
 - Using shrink/swell factors in earthwork estimates
 - Estimating the number of haul trips
 - Using material weights to customize shrink/swell factors
 - Using soil weights to calculate equipment load factors
 - Pay yards

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
9 Topsoil, Slopes & Ditches 135
- Dealing with topsoil135
- Calculating net volumes for earthwork 139
- Slopes and slope lines142
- Estimating trenches147

10 Basements, Footings, Grade Beams & Piers 155
- Estimating basement excavation quantities155
- Finding volume - outside basement walls157
- Calculating the total volume for basement excavation164
- Sample basement estimate170
- Estimating ramps175
- Grade beams and piers178

11 All About Spoil and Borrow 181
- Underlying costs of spoil and borrow181
- Spoil and borrow volume calculations183
- Calculating the volume of a stockpile184
- Finding the volume for a stockpile of unknown height186
- Calculating volume for a stockpile of set area190

12 Balance Points, Centers of Mass & Haul Distances 195
- Balance points to an excavation estimator195
- Balance points to an engineer196
- Reducing haul distances197
- Calculating haul distances200

13 Earthmoving Equipment: Productivity Rates and Owning & Operating Costs 209
- Machine power210
- Machine speed214
- Machine production218
- Productivity calculations for a simple dirt job221
- Owning and operating costs230
- Calculating the overhead234
- Adding the profit237
- Bid price per cubic yard237

14 A Sample Take-off 239
- General specifications240
- Doing the take-off242

15 Costs and Final Bid for the Sample Estimate 335
- The bid preparation process336
- Overhead340
- Machine selection340

Blank Worksheets 434
- Grid square area and volume435
- Grid take-off – existing contour436
- Grid take-off – proposed contour437
- Grid square calculation sheet438
- Cut and fill prism calculations439
- Quantities take-off sheet440

Index441
Construction cost estimating is demanding work, no matter what type of construction is involved. But I think estimating earthwork is the hardest of all. Why? Two reasons. First, excavation has more variables and unknowns. You don’t know what’s down there until you start digging. Second, you have to rely on information from many sources — some of which may not be accurate.

That’s why every earthwork estimator needs special skills:

- The ability to read plans and specifications
- An understanding of surveying and engineering practice
- A facility with mathematical calculations
- The ability to anticipate environmental and legal issues
- An abundance of good common sense.

If you can bring common sense to the task, this manual will show you how to do the rest.

I’ll help you develop all the skills every good earthwork estimator needs. Of course, I can’t cover everything on every type of job. But I’ll include the information most earthwork estimators need on most jobs. Occasionally, you’ll have a job that requires special consideration. But if you understand the principles I’ll explain here, you should be able to handle anything but the most bizarre situations.

In this, the first chapter, I won’t do much more than touch on a few important points you should understand:

1) Why you have to estimate quantities
2) The importance of plans and specs
3) Working accurately
4) Keeping good records
After making these points in this chapter, I’ll describe a step-by-step estimating system, from making the site survey to writing up the final cost summary. I’ll teach you a process for making consistently-accurate earthwork estimates. Part of this process is calculating the cubic yards to be moved. That’s the heart of every earthwork estimate. I’ll cover quantity estimating in detail. Then I’ll explain how to find labor and equipment costs per unit. We’ll also consider soil and rock properties and how the equipment you use affects bid prices.

Why Calculate Quantities?

In the past, many smaller dirt jobs were bid as a lump sum rather than by the cubic yard. Dirt contractors based their bids on guesses — what equipment was needed and how long should it take? They didn’t bother estimating soil quantities. Making estimates this way overcame one problem: most excavation contractors didn’t know how to estimate soil and rock quantities.

I think those days are over. Fuel and labor costs are too high now. And the competition is too intense. There’s too much risk in “seat-of-the-pants” guesses. A few mistakes, a couple of surprises and you’re going to be looking for some other type of work. Only the best survive for long in this business. Most of the survivors know how to make accurate bids by the cubic yard. Fortunately, making good quantity estimates isn’t too hard if you’ve mastered a few simple skills. I hope that’s why you’re reading this page.

I’ve found that good earthwork estimators are good at calculating earthwork quantities. Here’s why:

First, no one’s going to do it for you. You have to do it yourself or it’s not going to get done. Many engineers, architects, and even some builders know how to figure soil and rock quantities. But few take the trouble to do it. Instead, they depend on you, the earthwork estimator, to do it.

Second, earthwork contractors who don’t bid by the cubic yard usually end up in court. That can cripple any company. It’s common for the actual amount of dirt moved to be more or less than expected. The best way to protect yourself is to bid by the cubic yard. If you have to move more dirt than the plans show, you’ll get paid more. It’s as simple as that.

Third, most owners, engineers and architects request excavation bids based on the cubic yards moved. That’s now the accepted procedure for most projects, from single-family homes to roads and commercial jobs.

General and Special Quantities

If you agree that excavation bids should be based on quantity estimates, the next step should be obvious. We have to start every estimate by figuring the quantity of soil to be moved.

I recommend you start the estimate for any project, no matter how large or small, by dividing excavation quantities into two categories:
General quantities include any work where you can use motorized equipment such as scrapers, hoes and loaders at their designed production rate.

Special quantities include anything that requires special care or lower production rates. Examples are most rock excavation, nearly all hand excavation, backhoe work around sewer lines, underground utilities, or existing structures. Naturally, prices for special quantities are higher than prices for general quantities.

Keeping these two quantities separate protects you. Most excavation contracts have a clause that covers extra work. Unanticipated rock deposits, special soil problems and unusual trenching problems are extra work that you should be paid extra for. If you’ve bid a higher price for special quantities, you’ll get paid at that price per cubic yard for the additional work. Otherwise you could end up chipping out rock at the price of moving sand.

Calculating Cubic Yard Cost

Here’s the basic formula for costs per cubic yard:

\[\text{Labor and equipment cost per hour multiplied by the hours needed to complete the work, divided by the cubic yards of material to be moved.} \]

Does that seem simple? It’s not. You may know your hourly labor and equipment costs right down to the last penny. But estimating the time needed is never easy. And calculating volumes for sloping and irregular surfaces is demanding work.

Notice several things about the formula for computing costs per cubic yard.

First, it’s based on labor and equipment costs for your business. That’s important and I’ll have more to say about it later.

Second, it assumes you know the quantity of soil or rock to be moved. That’s going to take some figuring.

Third, even after you’ve calculated the cost per hour and quantity of soil, you’re not finished. You need to estimate the time needed. Usually that’s the hardest part. To do it, you have to decide on the equipment (method) to use.

Of course, the quantity of material (yardage) is a very important part of our cost formula. But the excavation method (type of equipment) also has a major influence on cost. The most expensive equipment (cost per hour) will usually be the most productive (move soil at the lowest cost). But the machine with the largest capacity isn’t always the best choice for every outhaul. I’ll explain why later. For now, just understand that making good equipment selections will help reduce costs.
Nearly every significant excavation project that’s let out for bid will be based on a set of plans. Plans are scale drawings that show the finished project. Plans are supplemented with written descriptions called specifications (specs for short). Specs explain in words what the plans can’t or don’t show. Ideally, the plans and specs, read together, should answer every question about the job. They shouldn’t leave anything unclear or subject to interpretation. The better the job done by the engineer or designer, the more likely the plans will be clear and complete.

Plan reading is an important skill for every earthwork estimator. But this isn’t a book on plan reading. If you need help with reading plans, if you don’t understand the plans and drawings in this manual, pay a visit to your local library. They’ll probably have several basic plan-reading texts to choose from.

As an excavation estimator, you’re expected to understand every detail in the plans and specs for the jobs you bid. That’s why they’re worth careful study. Read these documents completely. Note everything that affects your excavation work. Some engineers and architects aren’t very well organized. They may put instructions and notes almost anywhere on the plans. Read every page carefully, regardless of what you think it’s about.

Pay particular attention to notes that spell out the contractor’s responsibility. For example, you may find a note somewhere on plans that relieves the engineer or architect of responsibility for damage to utility lines. The note probably says:

NOTE: While every precaution has been taken to show existing utilities in their proper location, it is the contractor’s responsibility to determine their actual location. No assumption should be made that no other utility lines fall within the limits of construction.

If you suspect utility lines may be a problem, ask the utility companies to locate their lines for you. Most will be happy to do that at no cost. But they may want ample advance notice.

Also pay attention to notes on natural obstacles (such as rock) or anything that’s buried on the site. Is there an abandoned underground storage tank or old basement in the area to be excavated? The plans may also mention drainage problems and unsuitable soil deposits, probably in the cross-section drawings or special provisions of the specs.

Search the plans and specs for everything that may affect cost. That’s always your starting place. But it’s not the end of your search. Many cost items won’t show up in either the plans or specs. For example, you’ll have to find out from the city or county building department what permits will be required. Also, city, county or federal law may set minimums for wages, employee benefits and insurance coverage.

Here’s another pitfall to watch for: Who pays to have the project staked out by a surveyor or engineer? In most cases, the designer will pay for surveying — the first time. If you knock over any survey stakes during actual work,
you’ll probably have to replace them at your own expense. Work as carefully around the stakes as possible. But if job layout makes it impossible to avoid moving stakes, allow enough in your bid to pay for another survey.

Make sure you understand how you’ll be paid. On larger projects, you’re usually paid per cubic yard, based on the difference between the original soil cross section and the cross section when work is finished. We’ll talk more about cross sections later in this book.

On many smaller projects, your payment may be based on the engineer’s estimate of yardage. If that’s the case, look for a provision in the specs that gives you an option to have final cross sections made at your own expense. Experience will help you decide if a final set of cross sections is to your advantage. But I recommend that you always take off quantities yourself. Don’t assume the plans are right. Anyone can make a mistake, but you could end up paying the price.

Undercutting

Undercutting is removing additional dirt from an area below the finished grade line. There are several situations where this is necessary. The most common is where a rock ledge is close to, but not above, the finished grade line. Figure 1-1 shows a typical situation. Most structures can’t be built directly on rock. If the rock weren’t there, you would excavate just to the finished grade line and be done. Because the rock is just below finished grade, you have to cut deeper. That’s the undercut. Then you have to backfill with suitable material such as compacted dirt. The dirt provides a buffer between the rock and the foundation.

There’s probably nothing in the specifications that gives you the right to collect for undercutting and backfill. But it’s expensive work and the cost shouldn’t come out of your pocket. Where undercutting may be necessary, include it in your bid item _per cubic yard cut._
Undercutting is also needed for underground utilities such as storm drains and sanitary sewer lines. Most plans will show only a designated flow line elevation. Based on the plans and judgment, you’ll have to decide how much and what type of bedding to install below the pipe. Each cubic yard of bedding requires a cubic yard of undercutting. Figure 1-2 shows an example. Undercutting may also be required on roads, parking lots and sidewalks — anywhere there’s a load on the soil.

Overfilling is the opposite of undercutting. When backfilling a large area, you can usually bring the backfill right to grade without doing any cutting away of excess backfill. But in a small area, it’s usually easier to bring the area above the final grade line by 2 to 4 inches, then cut off the excess. This is still called undercutting. Of course, you can’t expect to get paid for removing the 2- to 4-inch excess. But it’s still a cost of the job.

Accuracy Is Essential

Accuracy is the essence of estimating. If you can’t work accurately, you’re in the wrong business. But don’t get me wrong. I don’t mean that we’re going to account for every spadeful of soil on every estimate. There are times when you can ignore small differences in elevation. On most jobs these small plus and minus areas will average out to almost nothing. But a 1-inch mistake in elevation over the whole job can cost you thousands of dollars. Even \(1/16 \)-inch error over a few acres can hurt you.
Here’s an example. Assume you’re bringing in fill on a city lot that measures 125 feet by 150 feet. Because of a mistake in grade, your estimate of imported soil is wrong. It leaves the entire site 1 inch below the specified finished grade. How much more soil is needed to correct the 1-inch mistake?

Here’s the formula for volume:

\[
\text{Volume (in cubic feet)} = \text{length (in feet)} \times \text{width (in feet)} \times \text{depth (in feet)}
\]

In this example, you know the length and width in feet but the depth is 1 inch. To use the formula, convert 1 inch to a decimal part of a foot. You can either refer to the conversion chart (see Figure 1-3) or divide 1 by 12, since 1” = 1/12’. Either way, 1 inch equals 0.0833 feet.

Now you’re ready to use the formula for volume:

\[
\text{Volume (CF)} = 125 \times 150 \times 0.083 = 1,556.25
\]

How many cubic yards is that? Since there are 27 cubic feet in a cubic yard, divide the cubic feet by 27:

\[
\text{Volume (CY)} = 1,556.25 \div 27 = 57.6 \text{ CY}
\]

Trucking in almost 58 cubic yards of soil won’t be cheap. If imported soil costs you $25 a cubic yard, your 1-inch mistake is a $1,450 error. That could make the difference between profit and loss on this job.

<table>
<thead>
<tr>
<th>Inches</th>
<th>Decimal feet</th>
<th>Inches</th>
<th>Decimal feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>0.0052</td>
<td>7/8</td>
<td>0.0729</td>
</tr>
<tr>
<td>1/8</td>
<td>0.0104</td>
<td>15/16</td>
<td>0.0781</td>
</tr>
<tr>
<td>3/16</td>
<td>0.0156</td>
<td>1</td>
<td>0.0833</td>
</tr>
<tr>
<td>1/4</td>
<td>0.0208</td>
<td>2</td>
<td>0.1667</td>
</tr>
<tr>
<td>5/16</td>
<td>0.0260</td>
<td>3</td>
<td>0.2500</td>
</tr>
<tr>
<td>3/8</td>
<td>0.0313</td>
<td>4</td>
<td>0.3333</td>
</tr>
<tr>
<td>7/16</td>
<td>0.0365</td>
<td>5</td>
<td>0.4167</td>
</tr>
<tr>
<td>1/2</td>
<td>0.0417</td>
<td>6</td>
<td>0.5000</td>
</tr>
<tr>
<td>9/16</td>
<td>0.0469</td>
<td>7</td>
<td>0.5833</td>
</tr>
<tr>
<td>5/8</td>
<td>0.0521</td>
<td>8</td>
<td>0.6667</td>
</tr>
<tr>
<td>11/16</td>
<td>0.0573</td>
<td>9</td>
<td>0.7500</td>
</tr>
<tr>
<td>3/4</td>
<td>0.0625</td>
<td>10</td>
<td>0.8333</td>
</tr>
<tr>
<td>13/16</td>
<td>0.0677</td>
<td>11</td>
<td>0.9167</td>
</tr>
</tbody>
</table>

Figure 1-3
Inches to decimal feet conversion chart
Your Estimating Procedure

The more organized and logical your estimating procedure, the more accurate your estimates will be. If you have the tools, papers and information you need close at hand, you’re off to a good start. Then you can focus your attention and concentration on producing an accurate estimate. If you’re cramped for space, uncomfortable, and trying to work without all the equipment and information you need, errors are almost inevitable.

Start by organizing an efficient work area. It should be large enough so you can lay out all the plans on a table and still have room to write and calculate. Provide enough light to make reading comfortable, and keep the work area free of shadows. This is especially important when working with transparent overlays or other light-duty paper where you might mistake shadows for lines.

A good calculator is a must. I recommend buying a calculator with both a digital and a paper printout. You need the printout to check your figures. Make sure you have an engineer’s scale and drafting triangles for checking and drawing lines, a small magnifying glass, tape for holding overlays, and the normal collection of pencils, erasers, and paper.

Although it’s not essential, I like using a light table. You can place a drawing on it, overlay it with another paper, and see through both of them. It’s great for working with plan and profile sheets, or overlays on grid or take-off sheets.

Later in the book we’ll talk about using a planimeter to take off quantities. Although it’s relatively expensive, a good planimeter will soon pay for itself. Take care to select one that’s sturdy and has all the needed instructions and attachments.

A computer is even more expensive, but more and more estimators are using one. There are programs on the market today that can handle anything from simple calculations to a complete estimating program, with cross sections, quantities and printouts. But no program can take the place of an estimator who understands estimating procedures and practices. That’s the purpose of this book.

There are two advantages to using a computer. The first is time. That’s an estimator’s most valuable asset, and a computer can help make your time more productive. Second, a computer makes it easier to keep cost figures for equipment and labor. Records from past projects and estimates can make current estimates more accurate.

If you don’t currently have a computer, don’t jump in without doing some research first. There are many computers on the market, tons of software, and hundreds of dealers. Take the time to make yourself familiar with the options. Talk to dealers. More important, talk to other estimators who use computers to do their estimating. Read trade magazines, especially the ads for estimating software. And don’t go out and buy a computer and then look for estimating programs to run on it. First, choose the estimating program you like, and then
buy the computer that will run that program. Otherwise, you may find the computer you bought won’t run the program you like.

When you’ve got your work area and equipment set up to work efficiently, you’re on the path to accurate estimates. To stay on the path, it’s important to approach the work with a logical and organized procedure. That speeds up the work and reduces mistakes. Let me describe the method that works for me. I think it’ll work for you, too.

When starting a project, first read all documents describing the job. Take notes on any situation that’s not a normal work requirement. Are there utilities that must not be disturbed? Do the documents indicate specialized material types from log borings? Do they stipulate any arrangement for rock on the site? Look for any special provisions set out by the designer. Then head out for a field visit. That’s the subject of the next chapter.

After returning from the field, review the documents again, looking for unusual situations that the site visit brought to your attention. Then make a complete written outline of all work that needs to be done in the order in which it will be performed. Set up files for each separate section. Make a list of additional data such as quad sheets, local conditions, and any other information you need to gather.

Here’s the order I usually use.

1) Consider any drainage, traffic or work zone protection work that needs to be done. Are there any on-site streams that must remain open, or roadways to maintain? These would probably be lump sum items, not items you’d take off quantities for. Just make sure you don’t miss any of these special items.

2) After studying the plans and the site, you should have a good idea if there’s enough fill on the site, or if you’ll need a borrow pit. Or will you need a place to put excess material off-site? Begin now to make arrangements for needed sites, sampling of material for approval by the engineer, and purchasing any material that’s needed.

3) Now consider the topsoil requirements. Review the material sample, the requirements for replacement, and availability of storage area on site. Calculate the amount of usable material and the amount of waste that must be disposed of.

4) Will there be any special excavation, like rock work or the removal of existing structures or facilities? Make sure you include all work and any special equipment you’ll need. Will you need to rent equipment? What about rock drills, blasting material, or cranes?

5) Begin calculating the general quantities with the cut or fill work over the entire project. Start in the same place and proceed throughout the project the same way for every estimate. One way to make sure you cover all of the project is to set up a grid system with a corresponding file system. As you finish work in each grid, mark it off, file it, and move on to the next grid.
Next, calculate all the utility lines, keeping the figures for each area separate. Be especially careful in estimating the tie-in between new and existing lines. Allow a little extra time for lines that aren’t exactly where the plans show them to be.

Then consider the roads, parking lots, and paved or special drainage ditches. Again, keep the quantities for each separate. One note of caution: Remember to consider the base and sub-base when figuring final elevations.

Buildings, basements, sidewalks and other similar structures are next. After you’ve calculated each structure separately, add them all together to get a structure total.

Finally, calculate the topsoil. And don’t forget that if you’ve used a borrow pit, you may have to place topsoil there also.

Now you’re ready to start putting together all that information to come up with a realistic quantity total for the complete project. Fill out the final quantities sheet. Remember to attach all worksheets, scratch paper and calculator printouts so you can recheck your totals.

Now review your final sheet, looking for potential problem areas. If possible, have someone else check all your calculations and extensions. If that’s not possible, set the estimate aside and go through it again a few days later. You’ll have a fresh approach that may spot errors or omissions.

The last step is to go through all the documents and make sure they’re in order. Then file them. Don’t throw anything away — not even the scrap paper. Why are those records valuable? Keep reading.

Record Keeping

Once you’ve learned to read plans carefully and work accurately, there’s still one more important step: record keeping.

Think of your estimates as accumulated wisdom. Treasure them. Keep them handy. Make sure they’re easy to understand. They should show how each figure was developed. Why? There are at least four reasons:

First, planning the work is a big part of every estimator’s job. You can’t estimate any type of earthwork without making decisions about equipment. Once you’ve selected equipment for estimating purposes, document your choice on the estimate worksheets.

If your bid is accepted, you’ll probably want to do the work with the same equipment assumed in the estimate. What if months have gone by and you can’t remember how the figures were developed? You have to start selecting equipment and estimating costs all over again. If the equipment assumed in your estimate isn’t the same as the equipment actually used, comparison of estimated and actual costs may be meaningless.

Second, you’re going refer to most estimates many times over months or even years. You shouldn’t have to guess about how each figure was developed. That wastes time and can exhaust your patience. I’ve seen estimators who
should know better use the back of an envelope to figure special quantities. After entering the final cost, they usually discard the envelope. Later, if there’s a question about the estimate, how can you verify the figures? They’re gone!

Third, old estimates are invaluable when compiling new estimates. Every estimate (especially if you actually did the work) provides a frame of reference for future jobs — even if labor and equipment costs have changed.

Fourth, every estimator makes mistakes. That’s no embarrassment. But repeating mistakes is both foolish and expensive. The best way to avoid repeating mistakes is to preserve every scrap of estimating evidence — in a neat, tidy, well-organized file. Make notes on what worked and what didn’t. Review those estimates and notes when estimating similar jobs. Save everything. Someday you may want to write a book. I saved my notes and estimates and wrote a book. You’re reading it.

Using Public Records

To the professional estimator, there’s no such thing as too much cost information. Collect all the estimating data you can. It helps if you know where to look for it. I canvass city and county engineering departments, public works departments and maintenance departments for whatever information they can provide. They know about bid prices, soil conditions, abandoned streets, utility lines, sewer and water problems. Use the resources available from your city and county government.

Aerial maps at the county tax office and contour maps from the United States Geological Survey offer clues to possible water and soil problems. There are USGS offices in most states. They’re often located in the capitol, or in cities with universities. Check your local phone book or local engineering groups for the address of the nearest office. City, state and county highway departments will have information on soil problems they’ve found under highways in the area.

What If You Don’t Have Plans?

Up to this point, we’ve assumed that you’re bidding the job from plans and specs provided by an architect or engineer. But you may be asked to bid on a small job that wasn’t designed by an engineer or architect. Then you’ll have to create your own plan. It may also be up to you to determine quantities and prepare a contract.

In any case, always figure soil quantities and get a written contract on every job, large or small. The responsibilities and liabilities are all yours, so plan and execute your bid with care. Use the procedures and guidelines in this book — even if there are no plans.
If the owner doesn’t have a plan prepared by an architect or engineer, collect as much information as possible from the owner. Does he or she know of any soil problems at the site? Is it your responsibility to request the survey and staking? Are any permits needed? When should the job be completed? Where are the utility lines? What conditions might delay the work?

Whether the job is big or small, whether you’ve got no plan or a very complete plan prepared by the best engineering firm in the state, make a visit to the site part of your estimating procedure. That’s important — important enough to be the subject of an entire chapter. And that’s the next chapter in this book.
Index

A

AASHTO 36
Access, equipment 198
Accessibility, job site 19
Accounting fees, overhead 234
Accuracy
checking, effect on 78
rounding, effect on 77-78
Adobe 33
Aerial maps 15
Altitude
definition 216
horsepower, effect on 216
usable power, effect on 215
American Association of State
Highway and Transportation
Officials (AASHTO) 36
American Society of Testing
Materials (ASTM) 36
American Soil Conservation
Service (ASCS) 32
Angle of repose 156, 186, 189
Angle, reverse 187
Arc section, measuring by 50
Area
circle 101, 150
job site, formula for 137
oblique triangle 105-108
triangle 82
using compensating lines 104, 114-117
using Trapezoidal Rule 119-120
worksheet 86
Area available, stockpile 190-193
ASCS (American Soil Conservation
Service) 32
Asphalt road, coefficient of traction 215
ASTM (American Society of Testing
Materials) 36
Atmospheric pressure 216
Available power, equipment 214
Average area, formula 55
Average depth, formula 96
Average elevation 89
Average end area, volume, formula 84
Average end method
 cut and fill areas 82
trapezoidal prism 83
Average operating speed, compactors 228
Average slope line 158

B

Balance points
engineer, to 196-197
excavation, in 195-196
Bank cubic yards (BCY) 127
Bank material, defined 127
Bank run gravel 33
Barricades, traffic 23, 25
Baseline
horizontal 207
surveying 44
vertical 208
Basement excavation
calculating total volume 164
equivalent area 158
estimating 155-178
finding real depth 168
sample estimate 170-175
slope angles 156
wall dimensions 161
work space allowance 157
worksheet, volume calculations .. 166
Basement wall dimensions 160-161
BCY (bank cubic yards) 127
Bedding material, calculations .. 150
Bedding, trench 149
Bedrock 33
Beginning station 57
Bells, volume 178-179
Bench mark 45
Bench marks 45-67-68
Bid price 237
Bid, sample 335-433
Bidding process 209
Blue Book values 231
Boost time, pusher units 226
Boring log 31-32
Borrow
 all about 181-193
definition 181
distance to site 182
hauling 182
Borrow pit
costs 181-182
location 198
Boulders 33
Boundary lines 25
Braking force, effect of grade assistance on 213
Bridges, job site 19
Brush, job site 20
Buggy (polar planimeter) 47
Building and grounds, overhead .. 234
Bulldozer, production rates 227
Burning vegetation 25

C

Calculating
cubic yard costs 7
cut/fill, shortcut 96
missing corner 99
shortcuts 91
using equivalent area 158
Calculating in estimating 12
Caliche 33
Carpenter’s square, stockpile height,
finding 187
Cast (soil characteristic) 34
CCY (compacted cubic yards) ... 128
Center of mass 196
depth not uniform 203
distance to edge 201
equivalent area 208
formulas 200-201
uniform depth 203
vertical 203
Center to center dimensions, wall 161
Centerline, road slope 146-147
Channels, drainage 147
Checklist, site visit 17, 28-30
Circle
area 101
area formula 150
center of mass 202
haul distance for 201
Circumference, contour lines 100-101
Clay 33-34
Cobbles 33
Coefficient of traction
distance to target 216
factors 215
Column headings, worksheet ... 86-89, 92
Compacted cubic yards (CCY) .. 128
Compacted material, defined 128
Compaction
requirements 24
soil 35
Standard Proctor percent 130
test diagrams 37
testing 40
Compactor
average operating speed 228
production rates 227
Compensating lines 103
formula to find area 114
using to find volume 110-113
Computer, use in estimating 12
Concrete-lined ditch 147-148
Concrete road, coefficient of traction 215
Concrete, utility lines in 151
Condition of haul road
effect on cycle time 218
effect on rolling resistance 211
Conditions, surface 19
Cone, volume 186, 193
formula 163
Constants
brush volume, for 20
planimeter 49
scale 77
Construction material depth (TI) . 142
Construction scheduling, site visit . 18
Contour interval 64, 100
Contour lines
characters 62-65
circumference 100-101
comparing 71
elevation 66
intermediate 65, 92
measuring length 100
reading 74
Contour, reading 61
Contour profile 69
Disposal site
soil 24
vegetation 25
Distance
to edge to center of mass 201
effect on cycle time 218
Ditches
drainage 147
excavation 148
Downhill travel, total resistance 212
Drain slope 147
Drainage channels 147
job site 39
planning for 39
problems .. 19-20
slopes 143, 146-147
Drawbar pounds of pull 214
Dump sites 21
distance to 19
soil .. 182

E
Earthmoving equipment See Equipment
Earthwork
calculating net volumes 139-142
estimates, types of 6-7
estimating, skills needed 25
Easements, job site 25
Efficiency, effect on machine production 218
Efficiency factors, chart 220
Electrical lines, marking 22
Element, column heading 92
Elevation
average 89
between contour lines 66
design .. 41
final .. 41
proposed 41
Elevation changes, cut/fill 142
Elevations
project 69
real .. 68
slowing 142
Employee benefit costs 8
Encasement pipe, calculating volume 151
End area calculations
arc section 50
measuring strip 50
planimeter 47
stockpile 184
volume 54, 186, 193
Ending station 57
Engineer, balance points, using 196
Engineer’s scale 66-67
Engineers, soil 31
Engines, effect of altitude on 216
Equal depth contour method
estimating 99
worksheet 101
Equipment
access 198
life span 230
load factors, calculating 131-132
owning and operating costs 209, 230-237
planning factors 209
production rates 218-230
space for 19

F
Factors
coefficient of traction 215
efficiency 220
equipment load 131-132
hourly machine cost 231-232
job efficiency 220
load .. 131-132
machine repair 234
rolling resistance 211
shrink/swell 127
trench width 149
Field distance 144
Field visit 17
Fill
imported 24
providing from spoil 182
trench 150
Fill and cut areas 80
Fill calculations, worksheet 94
Fill depth, total, formula 140
Fill sections 42
Fill volume, formula 90
Finish grade 196
Fixed costs (overhead) 234
Fixed time, definition 217
Flat-bottom ditches 234
Flooding, job site 25
Flow line elevation 50
Foliage, volume of 20

Contractor’s bidding process 209
Contractor’s responsibilities, specified in plans 8
Contracts, overcut payment clause 153
Contracting, 2-3 23
Conversion chart, inches to decimal feet 11
Coordinate system, using to find volume 110-113
Corner elevations
calculating 92
interpolating 76-78
Corner volumes, excavating 163
Corners
column headings 87
grid square, identifying 86, 91
Cost information, collecting 15
Cost plus bids 257
Costs per cubic yard, formula 7
Costs, special, estimating for 7-10
Cross section method 46, 79
estimating 99
volume .. 84
Cross section
payment based on 9
sheets .. 43, 47
worksheet 58
Cross slope 147
Crown, roadway 146
Cubic yard, cost per 209
Cubic yard estimates 6
Cubic yards per hour, production rate 219
Cut and fill
areas .. 80
combining 141
cross section 143
operations 43
prism calculations worksheet 94-95
shortcut worksheet 97
under a structure 142
Cut calculations, worksheet 95
Cut depth, total, formula 140
Cut sections 42
Cut volume 89
Cycle time
definition 217
effect on cost 217
equipment 218
Datum 61
Day operations, efficiency factors 220
Decimal feet, converting to 11
Decimal places 77
Density, soil 38
Depreciation, machine 230
Depth
basement excavation 168
calculating for corners 92-93
calculation worksheet 93
Design, tire, effect on rolling resistance 210
Diameter of circle, formula 101
Difficulty, job 19
Dimensional systems 161
Dimensions, basement wall 160-161
Dirt road, coefficient of traction 215
Disposal
soil .. 182
tires ... 233

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
Index 443
Management, overhead 234
Map scale ... 100
Map symbols72
Maps, locating and using 15
Maps, survey ... 29
Markers, survey type 22
Mass, center of See Center of mass

Material

borrow pit .. 182
effect on machine production 218
ero, site storage 22
selling .. 184
weights, chart 132
Measuring methods arc method .. 50, 52-53
measuring strip 50
planimeter .. 47-49
Measuring tools

engineer's scale66
rubber band ... 67
strip .. 50-51
Midpoint ... 184
-horizontal ... 207
vertical ... 208
Modified Proctor Test 36
Moisture, soil 36-38
-optimum ... 26
-problems .. 38
Monotropic soils 132
Monuments .. 67-68
Motor grader ... 218
production rates 229
Mound, finding volume 103-109
Muck33
Mud ... 33

N

National Geodetic Vertical Datum 62
Naturally-aspirated engines, effect of altitude on 216
Net cut/fill depths 140
Net earthwork volumes, calculating 139-142
Night operations, efficiency factors 220

O

Oblique triangle, finding area of 105-108
Obstructions, job site 19
Operating costs

fuel and lubricants 233
repairs .. 233
tires ... 233
Operating gear, effect on available power 214
Organic soils .. 34
Out elevation .. 87-88
Outside corner 87
basement .. 162
Outside to outside dimensions, wall 161
Overcut .. 234-237
payment clause 153
trenching .. 152
Overfilling .. 10
Overhead .. 234-237
calculating .. 236
cub yard price 236
Ownership costs 230-233
depreciation .. 230

P

insurance ... 231
interest ... 231
overhead ... 234
Owning and operating costs, equipment 209, 230-233

P

Payment

overcut, for .. 153
services, for 9
Payroll, overhead 234
Pea gravel ... 33
Peat .. 33
Percolation test 38-39
Performance records, equipment, importance of 210
Permanent bench marks (BM) 68
Permits ... 2.25
Personnel, planning for 209
Phone lines, marking 22
Piers, volume ... 178-179
Pipe wall thickness, importance in estimating 151
Plan and profile area take-off

Plan and profile sheets 43, 45-46
road project .. 204
Plan difference 142
Plan distance ... 144
Plan reading .. 8
Plan sheets .. 43
Plan view, sample basement excavation 171

Planes

existing elevation 79
proposed elevation 79
trapezoidal shape 83
Planimeter

anchoring .. 48
constant ... 49
reading .. 49
Planimetric maps 61
Planning slopes 143
Planning team, contractors 209
Plans, reviewing 17
Plasticity, soil .. 35
Plumb bob, stockpile height, finding 187
Pneumatic roller, average operating speed 228
Point elevation 89
Point of optimum moisture 36
Polar planimeter 47
Pond, finding volume 100
Pounds of pull, traction 214-215
Pounds of push, traction 215
Power, available 214
Power, machine, definition 210
Price per cubic yard 237
Prism

stockpile middle section 184
trapezoidal .. 83
truncated .. 79
volume .. 192
Proctor test ... 35
Production calculations, material 226
Production rate calculating 219
formula ... 225
reducing .. 219

R

Ramps

combination .. 175, 178
estimating .. 175-178
inside .. 175
outside .. 175-178
Real depth, basement excavation 169
Real elevations 68
Record keeping, importance of 14-15
Recorder of Deeds, checking with 25
Rectangle, center of mass 202
Red heads ... 22-23
Relief maps .. 61
Relief markings 62
Repair cost, machine 233-234
Repose, angle of 186, 189
Resistance data, machine 214
Resistance, grade, definition 210
Resistance, rolling, definition 210
Resistance, total, formulas 212
Return time, pusher units 226
Reverse angle, method, stockpile height 187-190
Ribbon (soil characteristic) 34

Estimating Excavation
Total corner depth, formula 94
Total depth, shortcut formula 96
Total resistance example 223
formulas .. 212
Total volume of cut/fill, formula 96
Track equipment, efficiency factors 220
rolling resistance factor 211
slopes, on ... 216
weight on drive wheels 216
working speed ... 19
Tracks, coefficient of traction 215
Traction effect on usable power 215
coefficients of, factors 215
Tractor overhead cost 234
weight on drive wheels 216
Traffic conditions, job site 19
Traffic control ... 19, 23
Transfer time, pusher units 226
Trapezoidal Rule .. 83
Trapezoidal prism 83
Trench boxes ... 146
Trenches calculating fill 150
center of mass .. 202
finding volume ... 98-99
Truck, rolling resistance 211
Truncated prism .. 79
Two-wheel tractor, weight on drive wheels 216
Tying down utility lines 22, 23

Undercutting ... 9-10
Underground structure excavation, estimating 155
Unstable slopes, equipment for 19
Unstable soil ... 21
Uplift travel, total resistance 212
U.S. Coast and Geodetic Survey 68
U.S. Geodetic Survey 67-68
U.S. Geological Survey (USGS) 62
maps ... 15
Usable power .. 215
Utilities, overhead 234
Utility easements .. 25
Utility lines .. 25
excavating for .. 150
job site .. 22
locating ... 22
marking .. 22
set in concrete .. 151
Utility trenches ... 149

V
V-in/V-out formulas 167
V-out calculations, sample 173
Vandalism, job site 24
Variable time, definition 218
Vee ditches ... 147-148
Vegetation, job site 19-20
burning .. 25
Vernier, planimeter 49
Vertical center of mass 103
Vertical datum ... 61
Vertical scale .. 44, 54
Vertical wall excavations 165
Visit, site ... 38
Void ratio .. 38
Volume average area 55-56
average end area .. 84
average end method 82, 83
bells ... 178-179
cone ... 163, 186, 193
coordinate system, using cross section method 79, 84
cut and fill areas .. 82, 96
drainage ... 193
end area ... 193
end area calculations 54
drainage, combined 184
equal area, calculating 160
formula .. 11
formula using Trapezoidal Rule 117
grade beams .. 178-179
hill .. 102
interpolation .. 76-78
irregular areas .. 103
missing corner, calculating 99
mound ... 103-109
mound, using average depth 109
mound, using compensating lines 105-113
piers ... 178-179
pond ... 100
prism ... 184, 192
ramp ... 175-178
replaced topsoil .. 138-139
sample basement excavation 170-175

W
Wall dimensions, basement 160-161
Water drainage .. 19-20
job site .. 25
problems .. 38
Water lines, marking 22
Water table, job site 21, 38
Weathered rock ... 33
Weight, machine, effect on machine speed 214
Weight of drive wheels, formula 216
Weight on wheels, calculating 212
Wheel equipment efficiency factors 220
rolling resistance factor 220
Wheel scraper grade resistance 213
usable power .. 215
Work space allowance, basement excavation 157
Workers, local .. 23
Worksheet column headings 86-89, 92
cut/fill prism calculations 94-95
depth calculation 93
equal depth contour volume 101
individual grid square area 86
take-off ... 85
shortcut for cut/fill 97
volume ... 86

X, Y, Z
Yards, pay .. 133
Yellow heads .. 22-23
Zero line .. 80, 91-92
Practical References for Builders

Excavation & Grading Handbook Revised

The foreman's, superintendent's and operator's guide to highway, subdivision and pipeline jobs: how to read plans and survey stake markings, set grade, excavate, compact, pave and lay pipe on nearly any job. Includes hundreds of informative, on-the-job photos and diagrams that even experienced pros will find invaluable. This new edition has been completely revised to be current with state-of-the-art equipment usage and the most efficient excavating and grading techniques. You'll learn how to read topo maps, use a laser level, set crows feet, cut drainage channels, lay or remove asphaltic concrete, and use GPS and sonar for absolute precision. For those in training, each chapter has a set of self-test questions, and a Study Center CD-ROM included has all 250 questions in a simple interactive format to make learning easy and fun. 512 pages, 8½ x 11, $42.00

CD Estimator

If your computer has Windows™ and a CD-ROM drive, CD Estimator puts at your fingertips over 135,000 construction costs for new construction, remodeling, renovation & insurance repair, home improvement, framing & finish carpentry, electrical, concrete & masonry, painting, and plumbing & HVAC. Monthly cost updates are available at no charge on the Internet. You'll also have the National Estimator program — a stand-alone estimating program for Windows™ that Remodeling magazine called a "computer wiz," and Job Cost Wizard, a program that lets you export your estimates to QuickBooks Pro for actual job costing. A 60-minute interactive video teaches you how to use this CD-ROM to estimate construction costs. And to top it off, to help you create professional-looking estimates, the disk includes over 40 construction estimating and bidding forms in a format that's perfect for nearly any Windows™ word processing or spreadsheet program. CD Estimator is $78.50.

Markup & Profit: A Contractor's Guide

In order to succeed in a construction business, you have to be able to price your jobs to cover all labor, material and overhead expenses, and make a decent profit. The problem is knowing what markup to use. You don't want to lose jobs because you charged too much, and you don't want to work for free because you charged too little. If you know how to calculate markup, you can apply it to your job costs to find the right sales price for your work. This book gives you tried and tested formulas, with step-by-step instructions and easy-to-follow examples, so you can easily figure the markup that's right for your business. Includes a CD-ROM with forms and checklists for your use. 320 pages, 8½ x 11, $32.50

Construction Estimating Reference Data

Provides the 300 most useful manhour tables for practically every item of construction. Labor requirements are listed for storefront, concrete work, masonry, steel, carpentry, thermal and moisture protection, doors and windows, finishes, mechanical and electrical. Each section details the work being estimated and gives appropriate crew size and equipment needed. Includes a CD-ROM with an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program, plus an interactive multimedia video that shows how to use the disk to compile construction cost estimates. 432 pages, 11 x 8½, $39.50

National Electrical Estimator

This year's prices for installation of all common electrical work: conduit, wire, boxes, fixtures, switches, outlets, loadcenters, panelboards, raceway, duct, signal systems, and more. Provides material costs, manhours, labor rates and total installed cost. Explains what you should know to estimate each part of an electrical system. Includes a CD-ROM with an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program, plus an interactive multimedia video that shows how to use the disk to compile construction cost estimates. 552 pages, 8½ x 11, $57.75. Revised annually

Getting Financing & Developing Land

Developing land is a major leap for most builders — yet that's where the big money is made. This book gives you the practical knowledge you need to make that leap. Learn how to prepare a market study, select a building site, obtain financing, guide your plans through approval, and then control your building costs so you can ensure yourself a good profit. Includes a CD-ROM with forms, checklists, and a sample business plan you can customize and use to help you sell your idea to lenders and investors. 232 pages, 8½ x 11, $39.00

Pipe & Excavation Contracting

Shows how to read plans and compute quantities for both trench and surface excavation, figure crew and equipment productivity rates, estimate unit costs, bid the work, and get the bonds you need. Explains what equipment will deliver maximum productivity for a job, how to lay all types of water and sewer pipe, and how to switch your business to excavation work when you don't have pipe contracts. Covers asphalt and rock removal, working on steep slopes or in high groundwater, and how to avoid the pitfalls that can wipe out your profits on any job. 400 pages, 8½ x 11, $29.00

Basic Engineering for Builders

This book is for you if you've ever been stumped by an engineering problem on the job yet wanted to avoid the expense of hiring a qualified engineer. Here you'll find engineering principles explained in non-technical language and practical methods for applying them on the job. With the help of this book you'll be able to understand engineering functions in the plans and how to meet the requirements, how to get permits issued without the help of an engineer, and anticipate requirements for concrete, steel, wood and masonry. See why you sometimes have to hire an engineer and what you can undertake yourself: surveying, concrete, lumber loads and stresses, steel, masonry, plumbing, and HVAC systems. This book is designed to help you, the builder, save money by understanding engineering principles that you can incorporate into the jobs you bid. 400 pages, 8½ x 11, $36.50

National Construction Estimator

Current building costs for residential, commercial, and industrial construction. Estimated prices for every common building material. Provides man-hours, recommended crew, and gives the labor cost for installation. Includes a CD-ROM with an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program, plus an interactive multimedia video that shows how to use the disk to compile construction cost estimates. 672 pages, 8½ x 11, $57.50. Revised annually

National Earthwork & Heavy Equipment Estimator

Complete labor, material, and manhour prices for estimating most earthmoving projects. You'll find how to read site plans, what's necessary in site preparation, how to determine site cut and fill quantities, how to determine soil swell and compaction, how to work with topsoil, slabs and paving, road work, curbs and gutters, and trench excavation. Includes factors affecting equipment production and how to include them in your estimate. Contains production rates for excavators, trucks, dozers, scrapers, compactors, graders and pavers, as well as blasting, ripping rock, and soil stabilization. Includes a FREE CD-ROM with an electronic version of the book, a stand-alone estimating program and a multimedia tutorial. Monthly price updates on the Web are free and automatic all during 2008. Also includes Job Cost Wizard that lets you turn your estimates into invoices and export them into Quickbooks Pro. 340 pages, 8½ x 11, $57.00. Revised annually

Square-foot costs for residential, commercial, industrial, and farm buildings. Quickly work up a reliable budget estimate based on actual materials and design features, area, shape, wall height, number of floors, and support requirements. Includes all the important variables that can make any building unique from a cost standpoint. 248 pages, 8½ x 11, $33.00. Revised annually

Buy this complete title here: https://goo.gl/Z3wzbL

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
The Contractor's Legal Kit

Stop “eating” the costs of bad designs, hidden conditions, and job surprises. Set ground rules that assign those costs to the rightful party ahead of time. And it’s all in plain English, not “legalese.” For less than the cost of an hour with a lawyer you’ll learn the exclusions to put in your agreements, why your insurance company may pay for your legal defense, how to avoid liability for injuries to your sub and his employees or damages they cause, how to collect on lawsuits you win, and much more. It also includes a FREE computer disk with contracts and forms you can customize for your own use. 352 pages, 8½ x 11, $69.95

Land Development, Tenth Edition

The industry’s bible. Nine chapters cover everything you need to know about land development from initial market studies to site selection and analysis. New and innovative design ideas for streets, houses, and neighborhoods are included. Whether you’re developing a whole neighborhood or just one site, you shouldn’t be without this essential reference. 360 pages, 6 x 9, $55.00

Construction Forms & Contracts

125 forms you can copy and use — or load into your computer (from the FREE disk enclosed). Then you can customize the forms to fit your company, fill them out, and print. Loads into Word for Windows®, Lotus 1-2-3, WordPerfect, Works, or Excel programs. You’ll find forms covering accounting, estimating, fieldwork, contracts, and general office. Each form comes with complete instructions on when to use it and how to fill it out. These forms were designed, tested and used by contractors, and will help keep your business organized, profitable and out of legal, accounting and collection troubles. Includes a CD-ROM for Windows® and Mac™. 400 pages, 8½ x 11, $41.75

Greenbook Standard Specifications for Public Works Construction

Since 1967, twelve previous editions of the popular “Greenbook” have been used as the official specification, bidding and contract document for many cities, counties and public agencies throughout the West. New federal regulations mandate that all public construction use metric documentation. This complete reference, which meets this new requirement, provides uniform standards of quality and sound construction practice easily understood and used by engineers, public works officials, and contractors across the U.S. Includes hundreds of charts and tables. 480 pages, 8½ x 11, $69.95

National Concrete & Masonry Estimator

Since you don’t get every concrete or masonry job you bid, why generate a detailed list of materials for each one? The data in this book will allow you to get a quick and accurate bid, and allow you to do a detailed material takeoff, only for the jobs on which you’re the successful bidder. Includes assembly prices for bricks, and labor and material prices for brick bonds, brick specialties, concrete blocks, CMU, concrete footings and foundations, concrete on grade, concrete specialties, concrete beams and columns, beams for elevated slabs, elevated slab costs, and more. Includes a CD-ROM with an electronic version of the book with National Estimator, a stand-alone Windows® estimating program, plus an interactive multimedia video that shows how to use the disk to compile construction cost estimates. 672 pages, 8½ x 11, $59.00. Revised annually

Download all of Craftsman’s most popular costbooks for one low price with the Craftsman Site License

http://www.craftsmansitelicense.com

Craftsman Book Company
6038 Corte del Cedro
P.O. Box 6500
Carlsbad, CA 92018

24 hour order line
1-800-829-8123
Fax (760) 438-0398

Name
Company
Address
City/State/Zip

☑ This is a residence
☑ This is a residence

In A Hurry?
We accept phone orders charged to your
☑ Visa, ☑ MasterCard, ☑ Discover or ☑ American Express

Card# ________________________________ Tax Deductible: Treasury regulations make these references tax deductible when used in your work. Save the canceled check or charge card statement as your receipt.

Exp. date ________________________ Initials

Total enclosed ____________________________ (In California add 7.25% tax)

We pay shipping when your check covers your order in full.

Order online www.craftsman-book.com
Free on the Internet! Download any of Craftsman’s estimating databases for a 30-day free trial! www.craftsman-book.com/downloads

10-Day Money Back Guarantee
☐ 36.50 Basic Engineering for Builders
☐ 78.50 CD Estimator
☐ 39.50 Construction Estimating Reference Data with FREE National Estimator on a CD-ROM
☐ 41.75 Construction Forms & Contracts with a CD-ROM for Windows® and Mac™
☐ 69.95 Contractor’s Legal Kit
☐ 42.00 Excavation & Grading Handbook Revised
☐ 39.00 Getting Financing & Developing Land
☐ 69.95 Greenbook Standard Specifications for Public Works Construction
☐ 55.00 Land Development, Tenth Edition
☐ 32.50 Markup & Profit: A Contractor’s Guide
☐ 33.00 National Building Cost Manual
☐ 59.00 National Concrete & Masonry Estimator with FREE National Estimator on a CD-ROM
☐ 57.50 National Construction Estimator with FREE National Estimator on a CD-ROM
☐ 57.00 National Earthwork & Heavy Equipment Estimator with FREE National Estimator on a CD-ROM
☐ 57.75 National Electrical Estimator with FREE National Estimator on a CD-ROM
☐ 29.00 Pipe & Excavation Contracting
☐ 39.50 Estimating Excavation
☐ FREE Full Color Catalog

Prices subject to change without notice

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com