ROOFING

CONSTRUCTION & ESTIMATING

by Daniel Atcheson

- Turn your estimate into a bid.
- Turn your bid into a contract.
- ConstructionContractWriter.com
Acknowledgements

The author wishes to thank the following individuals and companies for providing general assistance, information, and various illustrations used in the preparation of this book.

American Plywood Association (APA) 7011 South 19th Street, P.O. Box 11700, Tacoma, WA 98411-0700
ASC Pacific, Inc. 2110 Enterprise Boulevard, W. Sacramento, CA 95691-3493
Asphalt Roofing Manufacturers Association (ARMA) 6000 Executive Boulevard, Suite 201, Rockville, MD 20852
Tim Atcheson, Atcheson Building Systems 3306 61st Street, Lubbock, TX 79413
James Edward Atcheson, 1906-1986
Tami Danielle Atcheson, Lubbock, TX
Mike Atcheson, AIA, Lubbock, TX
Cedar Shake & Shingle Bureau 515 116th Avenue N.E., Suite 275, Bellevue, WA 98004-5294
The Celotex Corporation 4010 Boy Scout Boulevard, Tampa, FL 33607-5750
Allan B. Jones, Crowder Brothers Hardware 1671 Venice ByPass, South Venice, FL 34293
Follansbee Steel General Offices, Follansbee, WV 26037
GAF Building Materials Corporation 1361 Alps Road, Wayne, NJ 07470-3689
Gladding McBean P.O. Box 97, 601 7th Street, Lincoln, CA 95648
Haag Engineering Co. P.O. Box 814245, Dallas, TX 75381-4245
Inland Buildings 175 N. Patrick Boulevard, P.O. Box 385, Brookfield, WI 53008-0385
Koppers Industries, Inc. 436 Seventh Avenue, Pittsburgh, PA 15219-1800
Randy Hooks, Lydick-Hooks Roofing P.O. Box 2605, Lubbock, TX 79408
Manville Sales Corporation, Roofing Systems Division P.O. Box 5108, Denver, CO 80217
Mayes Brothers Division of Great Neck Saw Manufacturers, Inc. 165 East Second Street, Mineola, NY 11501
MM Systems Corporation 4520 Elm Dale Drive, Tucker, GA 30085-0326
Monier Roof Tile P.O. Box 19792, Irvine, CA 92713
Owens-Corning 43659
Petersen Aluminum Corporation 955 Estes Avenue, Elk Grove Village, IL 60007
Rubatex Corporation Adams Street, Bedford, VA 24523
Shakertown Cedar Siding, Shakertown Corporation 1200 Kerron Street/Box 400, Winlock, WA 98596
David Carlson, Southwest Florida Roofing 15491 S. Aron Circle, Port Charlotte, FL 33981
Stanley Tools Division of The Stanley Works New Britain, CT 06050
U.S. Department of Housing and Urban Development (HUD) 451 Seventh Street SW, Washington, DC 20410
Vermont Structural Slate Co., Box 98, 3 Prospect Street, Fair Haven, VT 05743
Zappone Manufacturing N. 2928 Pitsburg, Spokane, WA 99207

To my grandchildren Sophie & Cole Painter
And to my Lord and Savior, Jesus Christ, who gave me eyes to see, hands to type and a mind to think.

Looking for other construction reference manuals?
Craftsmen has the books to fill your needs. Call toll-free 1-800-829-8123
or write to Craftsman Book Company, 6058 Corte del Cedro, Carlsbad, CA 92011 for
a FREE CATALOG of over 100 books, including how-to manuals,
annual cost books, estimating, and contract-writing software.

Library of Congress Cataloging-in-Publication Data
Atcheson, Daniel Benn.
Roofing construction & estimating / by Daniel Atcheson.
p. cm.
Includes index.
ISBN 1-57218-007-2
I. Title.
TH2401.A83 1995
695--dc20 95-13394
CIP
©1995 Craftsman Book Company
Twelfth printing 2015

Buy this title complete here: https://goo.gl/SGpTnl

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
Contents

1 Measuring and Calculating Roofs 5
 Level Roofs ... 7
 Sloped Roofs .. 10
 How to Measure Roof Slope 12
 Perimeter of a Sloped Roof 17
 Net Versus Gross Roof Area 17
 Calculating Total Net Roof Area 18
 Roof Overhangs, Hips and Valleys 21
 Length of Ridge (Hip Roofs) 22

2 Roof Sheathing, Decking and Loading 23
 Check the Framing 23
 Solid Roof Sheathing 24
 Spaced Board Sheathing 29
 Roof Decking .. 32
 Loading the Roof 32
 Estimating Roof Sheathing 34

3 Underlayment on Sloping Roofs 35
 Saturated Felt Underlayment 36
 Saturated Fiberglass Underlayment 36
 Underlayment Requirements 37
 Drip Edge ... 40
 Installing Underlayment 43
 Estimating Underlayment Quantities 49
 Interlayment (Lacing) 57
 Eaves Flashing (Ice Shield or Water Shield) 61
 Valley Flashing .. 64

4 Asphalt Shingles 73
 UL Ratings for Shingles 75
 Deck Requirements 76
 Asphalt Strip Shingles 78
 Flashing at Chimneys and Other Vertical Structures 96
 Fasteners ... 106
 Number of Shingles Required per Square 108
 Number of Shingle Courses 109
 Estimating Asphalt Strip Shingle Quantities 113
 Ridge and Hip Units 114
 Estimating Ribbon-Course Quantities 124
 Individual Shingles 127
 Estimating Asphalt Shingle Roofing Costs 130

5 Mineral-Surfaced Roll Roofing 131
 Installing Mineral-Surfaced Roll Roofing 133
 Valley Flashing 134
 Estimating Mineral-Surfaced Roll Roofing 144
 Waste from Non-conforming Roof Layout 146
 Estimating Mineral-Surfaced Roll Roofing Costs 157

6 Wood Shingles and Shakes 159
 Installing Wood Shingles and Shakes 164
 Covering Capacity of Shakes 174
 Covering Capacity of Wood Shingles 174
 Estimating Wood Shingle and Shake Quantities 176
 Staggered Patterns 185
 Sidewall Shakes and Wood Shingles 185
 Roof Junctures 192
 Estimating Wood Shingle Roofing Costs 196

7 Tile Roofing 197
 Underlayment Under Tile Roof Coverings 199
 Installing Roof Tiles 200
 The Starter Course 202
 Fastening Roofing Tiles 204
 Flashing at Vertical Walls 217
 Replacing Broken Tiles 224
 Estimating Tile Quantities 225
 Estimating Total Tile Roofing Costs 229

8 Slate Roofing 231
 Slate Size, Color and Texture 231
 Felt Underlayment 234
 Installation on a Sloping Roof 234
 Fasteners ... 244
 Flashing ... 245
 Estimating Slate Quantities 249
 Estimating Slate Roofing Costs 254
9 Metal Roofing and Siding
Modern Metal Panel Systems ... 256
Installing Metal Roofing Panels 257
Job-Fabricated Seams .. 263
Estimating Metal Roofing and Siding 269
Steel Roofing and Siding Quantities 270
Ribbed Metal Panel Quantities 271
Miscellaneous Metal Roofing Quantities 275

10 Built-Up Roofing ... 291
Roof Slopes .. 292
Substrate Design ... 292
Back Nailing .. 297
Base Sheets (Vapor Retarders) 298
Roofing Membranes ... 300
Hot Bitumens ... 303
Cold-applied Bitumens ... 305
Surface Aggregate ... 306
Smooth-surface Roofing ... 308
Cap Sheets ... 308
Aluminum Roof Coatings ... 309
Phasing ... 310
Cant Strips ... 311
Temporary Roofs .. 313
Roof Traffic Pads .. 314
Water-retaining Roofs .. 315
Flashing on Flat Roofs .. 315
Roof Expansion Joints .. 319
Estimating BUR Systems .. 323
Testing BUR Systems .. 327
Built-up Roofing Warranties 327
Built-up Roofing Repairs and Re-roofing 329

11 Elastomeric Roofing .. 333
The Advantages of Elastomeric Systems 334
Liquid-applied Elastomers ... 335
Single-Ply Roofing Systems 338
EPDM Elastomeric Systems 337
CPE Elastomeric Roofing .. 342
CSPE Elastomeric Roofing 342
Hypalon Roofing ... 343
PVC Elastomeric Roofing ... 343
Composite Roofing Systems 343
Flashings for Elastomeric Roofs 344
Estimating Elastomeric Roofing 345

12 Insulation, Vapor Retarders and Waterproofing 347
The Benefits of Insulation ... 347
Insulation Materials ... 348
Reducing Heat Loss .. 355
Insulation Values ... 361
Vapor Barriers ... 362
Weatherproofing Existing Homes 364
Caulking and Seals ... 364
Wall Flashing ... 370
Waterproofing .. 371
Dampproofing ... 377

13 Roofing Repair and Maintenance 381
Finding the Source of Leaks 381
Repairing Leaks .. 384
Roof Maintenance .. 386
Assessing Hail Damage .. 388
Roofing Demolition .. 390
Re-Roofing ... 394
Estimating Re-Roofing Quantities 401
Attic Ventilation .. 402
Gutters and Downspouts .. 407

14 Estimating (and Maximizing) Production Rates 411
Labor Unit Prices .. 411
Estimating with Published Prices 415
Roofing Labor Tips ... 420

Appendix A Roof-Slope Factors 428
Appendix B Valley Length Factors 429
Appendix C Equations Used in This Book 430
Index ... 436
1 Measuring and Calculating Roofs

If you're like some roofing contractors, you estimate roofing quantities by calculating the area of a roof, then adding 10 percent for waste. That might be OK in a fat building market, but in a tight market you'll need a sharper pencil to compete successfully for the good jobs, and then make money on them. In this book, I’m going to show you how to make a quick and accurate takeoff for any kind of roof.

You'll also learn the latest and most acceptable roofing methods in an industry where installation practices are closely related to warranties. That's because material warranties may be invalid if you don't follow the manufacturer's recommendations for installation. Look here for general guidelines, but always follow the manufacturer's instructions to the letter.

New products come on the market every day to solve the complex roof covering requirements presented by modern building technology. Your job is to know as much as you can about those products. You also have to know how to install them so the job passes inspection and presents no future repair and maintenance problems. Callbacks are hard on your profit margin — and they don’t do your reputation any good either. Know as much as you can about your roofing business, and you’ll avoid them.

This book is more than an estimating book for roofing contractors. It develops a system, beginning with Chapter 1, for all types of roofing materials and installation methods. We'll cover the entire roofing trade, including how to manage your crews and keep them safe. So let’s get started.
Before you can bid any job, you have to figure your costs. And before you can figure the costs, you have to know the size of the job. So you have to do two things: First, measure the roof and calculate the total area. Then find the lengths of the eaves, gables (or rakes), ridges, hips and valleys.

When you construct a roof on a new building, you can get these measurements from the plans. On repair or replacement jobs, you’ll probably have to take your pencil, clipboard and tape measure, haul out your ladder, climb onto the roof, and start measuring.

To avoid mistakes, or a second trip to the job site, develop a system for taking measurements. Use a 100-foot flexible tape which has a ½-inch grout hook at the “stupid” end of the tape. Flexible tapes are made of metal, or fiberglass-reinforced nylon fabric. Find a tape that’s marked with highlights at 5-inch intervals to match the exposure of most composition shingles.

There is no cardinal rule for the sequence you use to measure a roof, as long as you don’t miss anything. Here’s a system that works for me:

Start by measuring the length of the eaves. On a gable roof, you only have to measure in one direction. On a hip roof, you’ll have to measure the eaves in two directions.

Next, measure the width of the roof. On a gable roof, hook the tape over one of the eaves, and run it over the ridge to the opposite eave. On a hip roof, measure the width the same way. To measure the length, hook the tape to the eaves at the ridge rafter (look ahead to Figure 1-16 on page 13 for an illustration of the parts of a roof), run the tape the length of the ridge and down the opposite ridge rafter. Measure the ridge at the same time.

Now, measure the hips and valleys by hooking the tape to a building corner and running the tape to the ridge. You use these measurements to calculate material requirements such as valley flashing and hip-covering material.

When you measure, some dimensions need to be more accurate than others. For instance, you could miss the length of ridge, hip or valley by a foot or more, and the error wouldn’t affect your total bid price too much. But don’t make a mistake in the length and width, because that error could be substantial. For example, assume you measure a roof at 100 feet by 200 feet, while the actual measurements are 100’6” by 200’6”. The difference between the two measurements is 150 square feet, or 1½ squares of material.

Always make a sketch of the roof layout, including dimensions, roof slopes, location of penetrations and any unusual circumstances such as rotten deck areas, ventilation problems, or overhanging tree branches or other obstructions.

Once you have the measurements, you’ll use them to calculate areas, slopes, angles, and allowance factors. Let’s begin with an easy example.
Level Roofs

The dimensions on the plans give you the actual measurements for a level roof. To get the area of a rectangular roof, multiply its length by its width.

\[
\text{Area of a level rectangular roof} = L \times W
\]

where \(L\) is the length and \(W\) is the width.

Of course, not every roof you work on will be a single rectangle. You may need to figure the area of a roof like the one in Figure 1-1. There are two ways to calculate this area:

1) The positive method

2) The negative method

In the positive method, you divide the roof into rectangular areas, then add the parts to get the total area. See Figure 1-2.

With the negative method, you extend the roof lines to form a single rectangle. Calculate the area of this rectangle, and subtract the areas of the rectangular spaces which lie outside the actual roof. Figure 1-3 illustrates this.

\textbf{Example 1-1: The Positive Method}

Divide the roof into rectangles as shown in Figure 1-2. Calculate the area of each rectangle, then add them together:

Area A = 20 feet by 60 feet, or 1,200 square feet
Area B = 20 feet by 40 feet, or 800 square feet
Area C = 20 feet by 20 feet, or 400 square feet

Then, the total area = 1,200 SF + 800 SF + 400 SF, or 2,400 SF
Example 1-2: The Negative Method

Extend the roof lines to form one rectangle, as in Figure 1-3. Calculate the total area of that rectangle, then subtract the areas of any rectangles which aren’t in the actual roof:

Extended rectangle = 60’ x 60’ = 3,600 SF

Area A = 40 feet by 20 feet, or 800 square feet
Area B = 20 feet by 20 feet, or 400 square feet

Total area outside the roof layout is 800 SF + 400 SF, or 1,200 SF. Subtract that from the extended area to get the total area:

3,600 SF - 1,200 SF = 2,400 SF

You get the same answer both ways. So you might as well use the easiest method — the one that requires the fewest calculations. For example, in Figure 1-4 you’d have to calculate three areas, then add them together. But in Figure 1-5 you only have to calculate two areas, and then subtract one from the other.

Perimeter of a Level Roof

The perimeter (also called the perimetry or periphery) of a level roof is the total distance around the roof, measured from outside of roof to outside of roof. For example, in Figure 1-6, the perimeter is:

\[L + W + L + W + R + R, \text{ or } 2L + 2W + 2R, \text{ or } 2(L+W+R) \]

where \(L \) is the roof length, \(W \) is the width, and \(R \) is the depth of the recess.

Figure 1-4 The positive method requiring three area calculations

Figure 1-5 The negative method requiring two area calculations
If a building doesn't have any recesses, the equation is simply:

\[
\text{Perimeter} = 2(L + W)
\]

or 2 times the total of length plus width.

\textbf{Example 1-3:} Find the perimeter of the level roof shown in Figure 1-7.

The perimeter of the roof \[= 2 \times (40' + 45' + 12')\]
\[= 194\] linear feet

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{roof-perimeter.png}
\caption{Roof perimeter example}
\end{figure}
Sloped Roofs

Figure 1-8 shows a few of the almost limitless types of sloped roofs. You define the slope of a roof in terms of rise (in inches) per 12 inches of run. For example, a “6 in 12 roof” is a roof that rises 6 inches for every 12 inches of horizontal run. That’s illustrated in Figure 1-9.

You can determine the slope of any roof with the equation:

\[
\text{Slope} = \frac{\text{Total Rise}}{\text{Total Run}} = \frac{\text{Rise (in inches)}}{12 (\text{inches per foot of run})}
\]

Example 1-4: Use the above equation to find the slope of the roof in Figure 1-10.

\[
\text{Slope} = \frac{5 \text{ feet 5 inches (total rise)}}{13 \text{ feet (total run)}} = \frac{5 \times 12 + 5}{13} = \frac{65}{13}
\]

Step 1: Convert feet and inches into feet and hundredths of a foot. To do that you divide 5 inches by 12 (inches). Notice that throughout the book, we usually round calculations to two decimal places.

\[
5 \div 12 = 0.4166 = 0.42' \text{ (rounded off)}
\]
Now the equation reads:

\[
\text{Slope} = \frac{5.42' \text{ (total rise)}}{13' \text{ (total run)}} \frac{\text{? inches}}{12}
\]

Step 2: To solve for "? inches," multiply both sides of the equation by 12:

\[
\text{Slope} = \frac{5.42}{13} \times 12 = 0.417 \times 12 = 5.004
\]

You'll round that answer down to 5, so the slope of the roof is 5 in 12.

You can change the original formula to find total rise if you already know the slope and the total run:

\[
\text{Slope} = \frac{\text{Total Rise}}{\text{Total Run}}
\]

\[
\text{Total Rise} = \text{Slope} \times \text{Total Run} = \frac{5}{12} \times 13 = 5.42' \text{ or } 5'5''
\]

You can also find the total run if you know the slope and the total rise:

\[
\text{Total Run} = \text{Total Rise} \div \text{Slope} = 5.42 \div 0.417 = 13
\]

(Remember, the 0.417 is 5 divided by 12.)

Example 1-5: Calculate the total rise for a roof with a slope of 5 in 12 and a run of 20 feet.

\[
\text{Total Rise} = 0.417 \times 20 = 8.34' \text{ or } 8'4''
\]

Roof Pitch

The total *span* of a roof is the horizontal distance, from one eave to the other, as shown in Figure 1-11. You can use that information in a formula to find roof slope, if you know the roof *pitch*, by:

\[
\text{Pitch} = \frac{\text{Total Rise}}{\text{Total Span}} \quad \text{Equation 1-5}
\]

\[
\text{Slope} = 2 \times \text{Pitch} \quad \text{Equation 1-6}
\]
Occasionally a roof is described in terms of pitch, although that term means more to the framer than to a roofing estimator. But sometimes the pitch is the only information you have. Here’s how to convert roof pitch to roof slope:

Example 1-6: Convert a \(\frac{1}{2} \) pitch into terms of roof slope.

\[
\text{Slope} = 2 \times \frac{1}{2} = \frac{1}{2}
\]

From Example 1-4, Step 2, you have:

\[
\text{Slope} = \frac{2}{3} \times 12 = 8
\]

Therefore, the roof slope is 8 in 12.

Roof Slope in Degrees of an Angle

Sometimes roof slope is described in terms of degrees of an angle. When it is, you can use Figure 1-12 to convert roof slope to degrees, and vice versa.

How to Measure Roof Slope

You can determine the slope of a roof with an adjustable device called a Squangle®. You simply place the Squangle® against an exposed rafter tail or a block placed over the fascia board, adjust the square so that it lines up with the slope of the roof and read the scale. Figure 1-13 shows a Squangle®.

You can also use a sliding T-level to size the angle between the fascia and roof deck. That’s shown in Figure 1-14. Then transfer the angle to a board or sheet of paper and measure it with a Squangle® or protractor.

You can also place a bubble level and ruler over a straight board on the roof slope as shown in Figure 1-15. Since roof slopes are expressed in terms of rise per 12 inches of run, mark the level at 12 inches from one end. To determine slope, center the bubble in the level, place a ruler vertically so that its scale is lined up at your mark 12 inches from the up-slope end of the level, then read the distance to the bottom of the level. If, for instance, you read 4 inches on the ruler, the roof rises (or falls) 4 inches for each foot of run. Therefore, the roof slope is 4 in 12.
Rafters

Rafters are the inclined members of the roof frame. Figure 1-16 illustrates these rafter types:

- A rafter that extends perpendicularly from the top of an outside wall to the ridge board is called a common rafter.
- A common rafter that runs parallel to the ridge board is called a ridge rafter.
A rafter that extends diagonally from an outside corner of a building to the ridge board is called a
hip rafter.

A rafter that extends diagonally from an inside corner of a building to the ridge board is called a
valley rafter.

A rafter that extends from an outside wall to a hip rafter is called a **hip jack rafter.**

A rafter that extends from the ridge board to a valley rafter is called a **valley jack rafter.**

Rafter Length

Figure 1-17 is a plan view of a gable roof. The length (L on Figure 1-17) of the eaves edge (the roof dimension perpendicular to the run of the rafters) is horizontal. Therefore, you can read that dimension directly from the plans. But you can't see the exact size of the width (W in the figure) because the roof slopes. The **plan length** of a common rafter is called the **run** of the rafter. Figure 1-18 illustrates this for three kinds of rafters.

Sometimes you can scale the lengths of common rafters from an elevation or cross section drawing. But it's safer and more convenient to convert the plan dimensions. Figure 1-19 is a table which gives you the appropriate conversion factors. Column 2 of the table gives factors for common rafters, and columns 3 and 4 are for hip or valley rafters.

The values in column 2 are called **roof-slope factors.** The values in columns 3 and 4 are called **hip/valley-slope factors.** The conversion factors in Figure 1-19 assume that all hips and valleys are framed at an angle of 45 degrees with respect to the eaves line.

![Figure 1-17 Plan view of gable roof](image)

![Figure 1-18 Run of various types of rafters](image)
<table>
<thead>
<tr>
<th>Roof slope</th>
<th>Common or jack rafters (factor x run = actual length)</th>
<th>Hips or valleys (factor x run = actual length)</th>
<th>Hips or valleys (factor x plan length = actual length)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 12</td>
<td>1.004</td>
<td>1.417</td>
<td>1.002</td>
</tr>
<tr>
<td>2 in 12</td>
<td>1.014</td>
<td>1.424</td>
<td>1.007</td>
</tr>
<tr>
<td>3 in 12</td>
<td>1.031</td>
<td>1.436</td>
<td>1.015</td>
</tr>
<tr>
<td>4 in 12</td>
<td>1.054</td>
<td>1.453</td>
<td>1.027</td>
</tr>
<tr>
<td>5 in 12</td>
<td>1.083</td>
<td>1.474</td>
<td>1.042</td>
</tr>
<tr>
<td>6 in 12</td>
<td>1.118</td>
<td>1.500</td>
<td>1.061</td>
</tr>
<tr>
<td>7 in 12</td>
<td>1.158</td>
<td>1.530</td>
<td>1.082</td>
</tr>
<tr>
<td>8 in 12</td>
<td>1.202</td>
<td>1.564</td>
<td>1.106</td>
</tr>
<tr>
<td>9 in 12</td>
<td>1.250</td>
<td>1.601</td>
<td>1.132</td>
</tr>
<tr>
<td>10 in 12</td>
<td>1.302</td>
<td>1.642</td>
<td>1.161</td>
</tr>
<tr>
<td>11 in 12</td>
<td>1.357</td>
<td>1.685</td>
<td>1.191</td>
</tr>
<tr>
<td>12 in 12</td>
<td>1.414</td>
<td>1.732</td>
<td>1.225</td>
</tr>
<tr>
<td>13 in 12</td>
<td>1.474</td>
<td>1.782</td>
<td>1.260</td>
</tr>
<tr>
<td>14 in 12</td>
<td>1.537</td>
<td>1.833</td>
<td>1.296</td>
</tr>
<tr>
<td>15 in 12</td>
<td>1.601</td>
<td>1.888</td>
<td>1.335</td>
</tr>
<tr>
<td>16 in 12</td>
<td>1.667</td>
<td>1.944</td>
<td>1.375</td>
</tr>
<tr>
<td>17 in 12</td>
<td>1.734</td>
<td>2.002</td>
<td>1.416</td>
</tr>
<tr>
<td>18 in 12</td>
<td>1.803</td>
<td>2.062</td>
<td>1.458</td>
</tr>
<tr>
<td>19 in 12</td>
<td>1.873</td>
<td>2.123</td>
<td>1.501</td>
</tr>
<tr>
<td>20 in 12</td>
<td>1.944</td>
<td>2.186</td>
<td>1.546</td>
</tr>
<tr>
<td>21 in 12</td>
<td>2.016</td>
<td>2.250</td>
<td>1.591</td>
</tr>
<tr>
<td>22 in 12</td>
<td>2.088</td>
<td>2.315</td>
<td>1.637</td>
</tr>
<tr>
<td>23 in 12</td>
<td>2.162</td>
<td>2.382</td>
<td>1.684</td>
</tr>
<tr>
<td>24 in 12</td>
<td>2.236</td>
<td>2.450</td>
<td>1.732</td>
</tr>
</tbody>
</table>

Figure 1-19 Roof-slope factors for determining rafter lengths

Use roof-slope factors from column 2 of Figure 1-19 to determine the actual length of a common rafter or jack rafter.

You’ll refer to this table again in later chapters. There’s another copy, Appendix A, in the back of the book.

Example 1-7: Look at the diagram in Figure 1-20. Assume a roof slope of 10 in 12, then find the actual length for the typical common rafters.

Actual Length (common rafter) = \(10' \times 1.302 \) (from column 2, Figure 1-19)
= 13.02 linear feet
Figure 1.20 Hip roof example

Figure 1.21 Hip-and-valley roof example
Perimeter of a Sloped Roof

The eaves of a hip roof (Figure 1-20) or a hip-and-valley roof (Figure 1-21) run horizontally all the way around the building, so you can determine the perimeter from the dimensions on the roof plan. The formula is the same as that for a level roof:

\[P = 2(L + W + R) \]

where \(L \) is the roof length, \(W \) is the roof width, and \(R \) is the depth of the recess.

If the building has no recess, the formula for the perimeter is simply:

\[P = 2(L + W) \]

Example 1-8: Find the perimeter of the hip roof in Figure 1-20.

\[P = 2(40' + 20') = 120 \text{ linear feet} \]

To find the perimeter of a gable roof like the one in Figure 1-17, the formula is:

\[\text{Perimeter} = 2(\text{Length} + \text{Actual Width}) \]

\[\text{Actual Width} = 2(\text{Run} \times \text{Roof-Slope Factor}) \]

\[= 2\left(\frac{W}{2} \times \text{Roof-Slope Factor}\right) \]

\[= W \times \text{Roof-Slope Factor} \]

(from column 2 of Figure 1-19)

Thus, the perimeter of a gable roof is:

Equation 1-11

\[\text{Perimeter} = 2[L + (W \times \text{Roof-Slope Factor})] \]

Example 1-9: Find the perimeter of the gable roof in Figure 1-22 if the roof slope is 8 in 12.

\[P = 2(31' + [26' \times 1.202]) \]

\[= 2(31' + 31.25') \]

\[= 2 \times 62.5' \]

\[= 125 \text{ linear feet} \]

(For estimating purposes, round this to 125 feet.)

Net Versus Gross Roof Area

The *net* area of a roof is the area of roof sheathing that will be covered with roofing material. But you have to provide materials for an area much larger than the net roof area. You have to allow for such things as:

- Additional felt underlayment at the ridge, hips, and valleys

Figure 1-22 Gable roof example
- A starter course
- Hip and ridge units
- Cutting allowances at rakes, hips, and valleys (for shingles)

This larger roof area is called the *gross* area of the roof. For example, the net area of a roof might be 10 squares. However, you might have to provide additional material equal to a roof area requiring 12 squares. A roofing *square* is 100 square feet.

Allowance Factors

The simplest way to account for material required for overcutting and lapping is to use an *allowance factor*. An allowance factor is the ratio of the actual amount of material required to cover the roof (gross roof area) to the net area of roof deck covered:

\[
\text{Allowance factor} = \frac{\text{Area Covered (including allowances)}}{\text{Net Roof Area}}
\]

Equation 1.12

You can figure the percentage of material overrun by using the allowance factor. Here's an example:

Example 1.10

Assume that it will require 12 squares of material (including allowance for waste and lapping) to cover 10 squares of roof deck. Calculate the allowance factor and the percentage of material allowance.

\[
\text{Allowance factor} = \frac{12 \text{ squares}}{10 \text{ squares}} = 1.20, \text{ or a 20 percent material allowance factor}
\]

In later chapters, you'll see that allowance factors can be predicted, based on the roof type, roof size, roof slope, roofing material exposure, and type of roof construction.

Calculating Total Net Roof Area

Since the eaves and ridge of a roof run horizontally, their plan lengths are their actual lengths. And, as you've seen, you can find the actual length of any common rafter by multiplying its plan length by the roof-slope factor in Figure 1-19. So you can use a universal formula to calculate the actual (net) area of any roof that meets the following conditions:

- All roof planes have the same slope
- All hips and valleys are framed at 45 degrees with respect to the eaves
Here's the formula:

Actual (Net) Roof Area = Roof Plan Area x Roof-Slope Factor \[Equation \ 1-13\]

where Roof Plan Area equals roof area as seen in plan view. The Roof-Slope Factor is from column 2 of Figure 1-19.

Example 1-11: Assuming a roof slope of 5 in 12, find the net area of the roof shown in Figure 1-22.

\[
\begin{align*}
\text{Net Roof Area} &= 31' \times 26' \times 1.083 \\
&= 873 \text{ SF} \div 100 \text{ SF/square} \\
&= 8.73 \text{ squares}
\end{align*}
\]

Example 1-12: Assume a roof slope of 4 in 12, then find the net area of the roof shown in Figure 1-21.

\[
\begin{align*}
\text{Total Roof Plan Area} &= (50' \times 22') + (22' \times 11') \\
&= 1,342 \text{ SF} \\
\text{Net Roof Area} &= 1,342 \text{ SF} \times 1.054 \\
&= 1,415 \text{ SF} \div 100 \\
&= 14.15 \text{ squares}
\end{align*}
\]

When the slope of a roof changes from one section to another, you have to do a separate take-off for each area with a different slope. Here’s an example:

Example 1-13: Compute the area of the roof in Figure 1-23.

Step 1: Section off the drawing, as shown in Figure 1-24, to isolate the two different slopes. Begin with the large 6 in 12 section. Notice you must deduct the triangle formed by the section of 4 in 12 roof (labeled ABC on the drawing). Multiply the length by the width and subtract the area of the triangle:

\[
\begin{align*}
\text{Roof Plan Area (6 in 12)} &= (100' \times 48') - \left(\frac{48' \times 8'}{2}\right) \\
&= 4,800 \text{ SF} - 192 \text{ SF}^2 \\
&= 4,608 \text{ SF}
\end{align*}
\]

Step 2: Use the Roof-Slope factors from column 2 of Figure 1-19 to find the net roof area for the 6 in 12 roof:

\[
\begin{align*}
\text{Net Roof Area (6 in 12)} &= 4,608 \text{ SF} \times 1.118 = 5,152 \text{ SF}
\end{align*}
\]

Step 3: Find the area of the 4 in 12 section. Notice that you add the area of the triangle to this section:

\[
\begin{align*}
\text{Roof Plan Area (4 in 12)} &= (48' \times 16') + \left(\frac{48' \times 8'}{2}\right) \\
&= 768 \text{ SF} + 192 \text{ SF}^2 \\
&= 960 \text{ SF}
\end{align*}
\]
Figure 1-23 Roof with varied slopes

Figure 1-24 Sectioning the roof plan
Step 4: Repeat Step 2 for the 4 in 12 section:
Net Roof Area (4 in 12) = 960 SF x 1.054
= 1,012 SF

Step 5: Add together the two net areas:
Total Net Roof Area = 5,152 SF + 1,012 SF
= 6,164 SF

Roof Overhangs, Hips and Valleys

When you calculate the net area of a roof, be careful you don’t omit the roof overhang that extends beyond the walls of the building. (See Figure 1-25.) Also watch for overhangs at interior gable end walls on multi-level roofs like the one in Figure 1-26, and on dormers.

You also need accurate measurements for hips and valleys, which require a variety of roofing materials. Again, refer to Figure 1-19 for conversion factors you can use to calculate the actual lengths for hip and valley rafters. Use the slope factors in column 3 if the hip or valley rafter dimensions are based on the run. Use column 4 if measurements are taken from the plan length. See Figure 1-27.

If the hips and valleys are framed conventionally at a 45-degree angle to the outside walls, you can calculate the plan length with this formula:

Plan Length (Hip or Valley) = 1.414 x Run

Example 1-14: Assume a roof slope of 10 in 12, then find the actual length of any hip rafter for the roof in Figure 1-20.

In this illustration, the run of the hip rafter is 10 feet. Refer to column 3 in Figure 1-19 and you see the conversion factor for a 10 in 12 slope is 1.642.

Rafter length = 10’ x 1.642 = 16.42 linear feet

You can also use the formula above to calculate the plan length based on the run, then use the factor from column 4 in Figure 1-19 to get the actual length:

Plan length = 1.414 x 10’ = 14.14 linear feet

Rafter length = 14.14 x 1.161 = 16.42 linear feet
Now, what if a building is built with roofs of unequal slopes, such as the one shown in Figure 1-23? You can find the actual length of a valley where the roofs intersect by multiplying the run of the low-sloping roof by the appropriate factor from the table in Appendix B.

Example 1-15: Determine the actual length of each valley of the roof diagrammed in Figure 1-23. The run of the low-sloping roof is 24 feet.

So the actual valley length (using the factor from Appendix B) is:

Valley length = 24' x 1.247 = 29.93 linear feet

Length of Ridge (Hip Roofs)

Refer to Figure 1-28. If you assume that the hips are conventionally framed, you find the ridge length on a hip roof with:

\[
\text{Ridge} = L - [2 \times \left(\frac{W}{2}\right)] = L - W
\]

where \(L\) equals the length of the roof, and \(W\) is the width.

Example 1-16: Determine the ridge length of the roof diagrammed in Figure 1-20.

Ridge = 40' - 20' = 20 linear feet

You can’t do the example problems in later chapters if you don’t know the formulas in this chapter. Don’t go on until you’re sure you know how these equations work and how to apply them.
Buy this title complete here: https://goo.gl/SGpTnl

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
Ridge caps, metal roofing . 259-260
Ridge covers . 269
metal roofing . 136-137
roll roofing . 134-140, 142
Ridge flashing . 170, 210
Ridge joiner . 13
Ridge roll . 92
Ridge saddle . 213
Ridge seam . 260
Ridge shingles . 382
Ridge slates . 178
Ridge tiles . 202-203, 212, 217, 226
Ridge units
asphalt shingles . 92-95
estimating quantities . 114-115
rolling roofing . 145
roof area . 18
underlayment . 51
wood shingles & shakes . 169-170
Ridge vents . 260, 269, 403
Rigid fiberboard . 313
Rigid insulation . 354
built-up roofs . 296
classic look roof . 334, 335
roofing repair . 398
wood shingles & shakes . 173-174
Rise, roof . 11-12
Rock wool insulation 349, 352, 361
Roll roofers . 131-157
See also Mineral-surfaced
roofing
built-up . 300, 308
concealed nail (blind nail) . 134, 137-139
double-cover . 140-143
economizing costs . 157
estimating quantities . 144-156
exposed nail . 134-137
shingled . 134-143
hip and ridge units . 136
installation . 139-140, 142
live expectancy . 133-144
modified bitumen asphalt (MBA) . 132-133
pattern-edge . 132
re-roofing . 400-401
salvage . 132, 140
sheeting under . 24
shingle . 138
single-cover . 134
split-sheet . 20
starter course . 20
storage . 132
weight factors . 140-156
Roll roofing, as flashing
built-up roofs . 305
roofing repair . 393-394
tile roofing . 214, 220
underlayment . 65, 68
Roll valve metal . 65
Roof area . 17-19
Roof curb . 269
Roof deck . 23-52
Roof drainage areas . 408
Roof drains
built-up roofs . 292, 315, 319-320
elastomeric roofing . 345
Roof edge flashing . 142, 313
Roofing . 317, 340
Roof edging . 40
Roof frame . 23
Roof inspection . 381, 386
Roof insulation . 358-360
built-up roofs . 292, 298-301
309-311, 315, 321
elastomeric . 337-338
340, 342-343
wood shingles & shakes . 172-174
Roof juncture . 192
Roof load . 27, 32
Roof maintenance . 381, 386-388
Roof overhang . 21, 23, 30, 63
Roof penetrations
asphalt shingles . 89
built-up roofs . 309, 315, 318
elastomeric . 309, 315, 318
roofing repair . 383-384, 389
underlayment . 49-50
Roof perimeter . 8-9, 17, 339-340
Roof periphery . 8
Roof pitch . 11-12
Roof relief vent . 295
Roof rise . 11-12
Roof metal roofing . 112
Roof sectioning . 20
Roof slope
area . 17-21
asphalt shingles . 76-77
minimum . 9, 10, 13, 35
maximum . 31, 38-39
roofing repair . 140
underlayment . 38-40, 46, 52-53
varying . 64
Roof slope facing . 15, 17
Roof span . 11
Roof structure . 32
Roof supports . 25
Roof types . 10
Roof walkway . 314, 315, 318
Roofers' hatchet . 82, 422
Roofing cement
Asphalt shingles . 88-89
underlayment . 11, 43
Roofing equations . 40-43
Roofing felt . 56-62, 67-69
roofing equations . 40-43
Roofing felt . 56-62, 67-69
Roofing injuries . 334
Roofing tape . 382
Roof run
level . 7
loading . 32-34
stand . 172, 194-195
shed . 100
Roof flashings . 268
Roof paper 39, 297, 300, 313, 360
Roof material paper . 300, 308-309
Rotted roof . 29
Round gutter . 408
Round valley . 242-243
Round roofing . 249
Rubber closure . 120
Rubber vent flange . 102, 261
Rubber-vinyl compositions . 344
Rubberized asphalt . 132, 343, 377
Rubberized compositions . 344
Rubberized membrane . 376
Run
rafter . 21
roof . 11-12
S
Saddle flashing . 70, 96, 168-169
Saddle hip . 240-241
strip . 240
Saddle ridge . 238, 240-241
strip . 240
Sagging roof . 24
Salvaged shingles . 115
Saturant . 73
Scaffolding . 425
Scheduling . 423
Schmid lap . 274
Scorai . 307
Screening . 26
Screen . 409
Screen vented . 402, 405, 406
Seat cap . 382
Sealant . 364
epoxy . 266
foam . 370
neoprene . 370
Sealant tape . 369
Sealed underlayment system 46-48
Sealers
organosilicone . 379
quartz carbide . 379
Seam solvent . 343
Seam metal roofing . 263-268
batten . 266-267, 281-282, 284
braided . 269-270
cleats . 265-266, 268
cross . 268, 271
flashing . 265-266, 268
integral standing . 269
job-fabricated . 263-272
lock . 243, 269
riveted . 263-264
sold. red. standing . 247, 260, 262
265-266, 280-286
welded . 269
Sectioning a roof . 20
Seismic movement . 321
Seismic zones . 14
Sealant . 132
Shale . 132
Shifting . 132
Shingle
nails . 106
tabs . 87
Shingle patterns
asphalt . 82-84
Dutch weave . 185
gauge . 185
Shingle siding . 187-189, 194, 288
Shingle undercoursing . 185, 188
Shingles
Certi-guard . 159
Certi-last . 159
clipped . 127-128
damaged . 76, 385-386, 388, 395
dimmer . 86, 160, 162, 389-390
enamel-coated . 288
fire-resistant . 75, 159
flatiron . 160, 162, 389-390
hexagonal . 79, 127-129, 395
individ . 14
lock-down . 127-128
no-tab . 49, 107
pre-cut . 166-167
rebutted . 185
rejoined . 186
ridge . 382
salvaged . 115
slag . 160, 162, 389-390
T-lock . 64, 79-80
three-tab . 74, 78-79, 422
two-tab . 106
wind-resistant . 185
Shiplap boards . 26
Shoe . 408-409
Short term . 279
Side lap . 274, 293, 301
Side seam . 268
Sidewall shingles
bundled . 194
coating . 187
double-coursing . 188-190
exposure . 189
flushing . 188
installation . 186
ribbon coursing . 190
single-coursing . 188, 189-190
spacing . 188
Siding
flushing with . 100
metal . 269, 273, 278
shingle . 187-189, 194, 288
Silicone caulk . 365
Silicone rubber . 335
Silicone sealant 226, 366, 379, 382
Single-cover roofing . 132, 142
Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
<table>
<thead>
<tr>
<th>Page</th>
<th>Relevant Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>315-316</td>
<td>Single-coverage underlayment</td>
</tr>
<tr>
<td>317-318</td>
<td>Skylight flashing</td>
</tr>
<tr>
<td>319-320</td>
<td>Slab</td>
</tr>
<tr>
<td>321-322</td>
<td>Slab</td>
</tr>
<tr>
<td>323-324</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>325-326</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>327-328</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>329-330</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>331-332</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>333-334</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>335-336</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>337-338</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>339-340</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>341-342</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>343-344</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>345-346</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>347-348</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>349-350</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>351-352</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>353-354</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>355-356</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>357-358</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>359-360</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>361-362</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>363-364</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>365-366</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>367-368</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>369-370</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>371-372</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>373-374</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>375-376</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>377-378</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>379-380</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>381-382</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>383-384</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>385-386</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>387-388</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>389-390</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>391-392</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>393-394</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>395-396</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>397-398</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>399-400</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>401-402</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>403-404</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>405-406</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>407-408</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>409-410</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>411-412</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>413-414</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>415-416</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>417-418</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>419-420</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>421-422</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>423-424</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>425-426</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>427-428</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>429-430</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>431-432</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>433-434</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>435-436</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>437-438</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>439-440</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>441-442</td>
<td>Slag and slag汇总</td>
</tr>
<tr>
<td>443-444</td>
<td>Slag and slag汇总</td>
</tr>
</tbody>
</table>

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
Profits in Buying & Renovating Homes
Step-by-step instructions for selecting, repairing, improving, and selling highly profitable “fixer-uppers.” Shows which price ranges offer the highest profit-to-investment ratios, which neighborhoods offer the best return, practical directions for repairs, and tips on dealing with buyers, sellers, and real estate agents. Shows you how to determine your profit before you buy, what “bargains” to avoid, and how to make simple, profitable, inexpensive upgrades. 304 pages, 8½ x 11, $24.75

National Framing & Finish Carpentry Estimator Download
Current labor and material prices for thousands of framing and finish carpentry items. Step-by-step instructions for estimating everything from the sill plate to the ridge board, including hundreds of helpful pictures, tables and illustrations. Includes labor and material prices for installing practically all framing lumber, from girders to roof sheathing. Even includes hard-to-find demolition labor estimates. Lists costs and man-hours for finish carpentry such as ceiling sheathing, interior trim, molding, paneling, cabinets, countertops, hardwood flooring, wood stairways, and more. Includes free quarterly price updates throughout the edition year. Available only in electronic format. Have the updated prices you need in minutes and start estimating today with current data! Revised annually. $49.99, at www.craftsman-book.com

Building Contractor's Exam Preparation Guide
Passing today's contractor's exams can be a major task. This book shows you how to study, how questions are likely to be worded, and the kinds of choices usually given for answers. Includes sample questions from actual state, county, and city examinations, plus a sample exam to practice. This book isn't a substitute for the study material that your testing board recommends, but it will help prepare you for the types of questions and their correct answers—that are likely to appear on the actual exam. Knowing how to answer these questions, as well as what to expect from the exam, can greatly increase your chances of passing. 320 pages, 8½ x 11, $35.00

Contractor's Guide to QuickBooks 2015
QuickBooks 2015 has many new features that simplify a building contractor's bookkeeping work. You'll wonder how you managed without them. To help you make the most of these new features, or to make getting set up with QuickBooks almost painless, this user-friendly manual walks you through QuickBooks' detailed set-up procedure and explains step-by-step how to create a first-rate accounting system. You'll learn in days, rather than weeks, how to use QuickBooks to set up your contracting business organization, with simple, fast accounting procedures. But setting up QuickBooks from scratch can be time-consuming. On the free download included with purchase of the book, you'll find a QuickBooks file preconfigured for a construction company. Open it, enter your company's data, add info on your suppliers, subs and customers, and you're up and running. The setup's done for you. 280 pages, 8½ x 11, $68.50. See checklist for other available editions. Also available as an eBook (PDF), $34.25 at www.craftsman-book.com eBooks also available for 2008, 2009, and 2010.

CD Estimator
If your computer has Windows™ and a CD-ROM drive, CD Estimator puts at your fingertips over 150,000 construction costs for new construction, remodeling, renovation & insurance repair, home improvement, framing & finish carpentry, electrical, concrete & masonry, painting, earthwork & heavy equipment and plumbing & HVAC. Quarterly cost updates are available at no charge on the Internet. You'll also have the National Estimator program—a stand-alone estimating program for Windows™ that runs in a magazine called a "computer wiz," and Job Cost Wizard, a program that lets you export your estimates to QuickBooks Pro for actual job costing. A 60-minute interactive video teaches you how to use this CD-ROM to estimate construction costs. And to top it off, to help you create professional-looking estimates, the disk includes over 40 construction estimating and bidding forms in a format that's perfect for nearly any Windows™ word processing or spreadsheet program. CD Estimator is $133.50

National Construction Estimator
Current building costs for residential, commercial, and industrial construction. Estimated prices for every common building material. Provides manhours, recommended crew, and gives the labor cost for installation. Includes a free download of an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program. An interactive multimedia video that shows how to use the software to compile construction cost estimates is free at www.costbook.com 672 pages, 8½ x 11, $87.50. Revised annually Also available as an eBook (PDF), $43.75 at www.craftsman-book.com

Markup & Profit: A Contractor's Guide Revisited
In order to succeed in a construction business, you have to be able to price your jobs to cover all labor, material and overhead expenses, and make a decent profit. But calculating markups is only part of the picture. If you're going to beat the odds and stay in business - profitably, you also need to know how to write good contracts, manage your crews, work with subcontractors and collect on your work. This book covers the business basics of running a construction company. Whether you're a general or specialty contractor working on new construction or commercial work. The principles outlined here apply to all construction-related businesses. You'll find tried and tested formulas to guarantee profits, with step-by-step instructions and easy-to-follow examples to help you learn how to operate your business successfully. Includes a link to free downloads of blank forms and checklists used in this book. 336 pages, 8½ x 11, $35.50 Also available as an eBook (EPUB, MOBI for Kindle), $39.95 at www.craftsman-book.com

Rough Framing Carpentry
The "real skinny" on the down-and-dirty survival skills that no one likes to talk about—unique, unconventional ways to get through a debt crisis: what to do when the bills can't be paid, finding money and buying time, conserving income, transferring debt, setting payment priorities, cash flow techniques, dealing with judgments and liens, and laying the foundation for recovery. Here you'll find out how to survive a downturn and the key things you can do to pave the road to success. Have this book as your insurance policy; when the economy comes home to your business it will be your guide. 336 pages, 8½ x 11, $38.00 Also available as an eBook (PDF), $19.00 at www.craftsman-book.com

Electrician's Exam Preparation Guide to the 2014 NEC
Need help in passing the apprentice, journeyman, or master electrician's exam? This is a book of questions and answers based on actual electrician's exams over the last few years. Almost a thousand multiple-choice questions— exactly the type you'll find on the exam — cover every area of electrical installation: electrical drawings, services and systems, transformers, capacitors, distribution equipment, branch circuits, feeders, calculations, measuring and testing, and more. It gives you the correct answer, an explanation, and where to find it in the latest NEC. Also tells how to apply for the test, how best to study, and what to expect on examination day. Includes a FREE download with all the questions in the book in interactive test-yourself software that makes studying for the exam almost fun! Updated to the 2014 NEC. 352 pages, 8½ x 11, $59.50 See checklist for other available editions. Also available as an eBook (PDF), $29.75 at www.craftsman-book.com eBooks also available for 2005, 2008 and 2011

Roof Framing
Shows how to frame any type of roof in common use today, even if you've never framed a roof before. Includes using a pocket calculator to figure any common, hip, valley, or jack rafter length in seconds. Over 400 illustrations cover every measurement and every cut on each type of roof: gable, hip, Dutch, Tudor, gambrel, shed, gableo, and more. 480 pages, 5½ x 8½, $26.50

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com
Concrete Construction

Just when you think you know all there is about concrete, many new innovations create faster, more efficient ways to do the work. This comprehensive concrete manual has both the tried-and-tested methods and materials, and more recent innovations. It covers everything you need to know about concrete, along with Styrofoam forming systems, fiber reinforcing adjuncts, and some architectural innovations, like architectural foam elements, that can help you offer more in the jobs you bid on. Every chapter provides detailed, step-by-step instructions for each task, with hundreds of photographs and drawings that show exactly how the work is done. To keep your jobs organized, there are checklists for each stage of the concrete work, from planning, to finishing and protecting your pours.

Whether you're doing residential or commercial work, this manual has the instructions, illustrations, charts, estimating data, rules of thumb and examples every contractor can apply on their concrete jobs.

288 pages, 8½ x 11, $28.75
Ebook (PDF) also available; $14.38 at www.craftsman-book.com

Estimating Excavation Revised eBook

How to calculate the amount of dirt you'll have to move and the cost of owning and operating the machines you'll do it with. Detailed, step-by-step instructions on how to assign bid prices to each part of the job, including labor and equipment costs. Also, the best ways to set up an organized and logical estimating system, take off from contour maps, estimate quantities in irregular areas, and figure your overhead. This revised edition includes a chapter on earthwork estimating software. As with any tool, you have to pick the right one. Written by an experienced dirt contractor and instructor of computer estimating software, this chapter covers the program types, explains how they work, gives the basics of how to use them, and discusses what will work best for the type of work you handle. This eBook is the download version of the book in text searchable, PDF format. Craftsman eBooks are for use in the freely distributed Adobe Reader and are compatible with Reader 6.0 or above. 550 pages.

Available only as an eBook (PDF); $21.75, at www.craftsman-book.com

Paper Contracting: The How-To of Construction Management Contracting

Risk, and the headaches that go with it, have always been a major part of any construction project — risk of loss, negative cash flow, construction claims, regulations, excessive changes, disputes, slow pay — sometimes you'll make money, and often you won't. But many contractors today are avoiding almost all of that risk by working under a construction management contract, where they are simply a paid consultant to the owner, running the job, but leaving him the risk. This manual is the how-to of construction management contracting. You'll learn how the process works, how to get started as a CM contractor, what the job entails, how to deal with the issues that come up, when to step back, and how to get the job completed on time and on budget. Includes a link to free downloads of CM contracts legal in each state. 272 pages, 8½ x 11, $55.50
Ebook (PDF) also available; $27.75 at www.craftsman-book.com

National Repair & Remodeling Estimator

The complete pricing guide for dwelling reconstruction costs. Reliable, specific data you can apply on every repair and remodeling job. Up-to-date material costs and labor figures based on thousands of jobs across the country. Provides recommended crew sizes; average production rates; exact material, equipment, and labor costs; a total unit cost and a total price including overhead and profit. Separate listings for high- and low-volume builders, so prices shown are specific for any size business. Estimating tips specific to repair and remodeling work to make your bids complete, realistic and profitable. Includes a free download of an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program. An interactive multimedia video that shows how to use the software to compile repair and remodeling cost estimates is free at www.costbook.com.

512 pages, 8½ x 11, $88.50. Revised annually Also available as an eBook (PDF), $44.25 at www.craftsman-book.com

The Art of Roof Cutting Series DVD Library - Basic

A master framer demonstrates how to build hip, gable, gambrel and shed roofs, valleys, fake valleys and other details. As a skilled craftsman you will appreciate the value of these comprehensive roof framing videos. Used in technical schools and highly recommended by building contractors.

DVD - 2 Hrs. $79.95

The Art of Roof Cutting Series DVD Library - Advanced

A master framer demonstrates how to build octagons, roofs on variable plate heights, complex hip and gable roofs, hip to valley extensions, irregular angled rafters and more. As a skilled craftsman, you will appreciate the value of these comprehensive roof framing videos. Used in technical schools and highly recommended by building contractors.

DVD - 2.5 Hrs. $79.95

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com

Buy this title complete here: https://goo.gl/SGpTnl
The Complicated Roof -- A Cut and Stack Workbook

Increase your roof framing knowledge and understanding as you follow veteran roof cutter Will Holladay through the process of calculating two custom-home roofs. Accompany Will as he methodically builds two "real life" complicated roofs. You'll see firsthand how to determine angles and calculations for the actual cuts, based on the plans in the back of this book. 98 pages, 8½ x 11, $19.95

Download all of Craftsman's most popular costbooks for one low price with the Craftsman Site License.

http://www.craftsmansitelicense.com

In A Hurry?

We accept phone orders charged to your

- Visa, - MasterCard, - Discover or - American Express

Card#

Exp. date ________________ Initials ____________________________

Tax Deductible: Treasury regulations make these references tax deductible when used in your work. Save the canceled check or charge card statement as your receipt.

Order online http://www.craftsman-book.com

Free on the Internet! Download any of Craftsman's estimating databases for a 30-day free trial! www.craftsman-book.com/downloads

10-Day Money Back Guarantee

- 79.95 Art of Roof Cutting Series DVD - Basic
- 79.95 Art of Roof Cutting Series DVD - Advanced
- 39.50 Basic Engineering for Builders
- 44.75 Basic Plumbing with Illustrations
- 35.50 Builder's Guide to Accounting Revised
- 32.50 Building Code Compliance for Contractors & Inspectors
- 35.00 Building Contractors Exam Preparation Guide
- 133.50 CD Estimator
- 19.95 Complicated Roof
- 28.75 Concrete Construction
- 48.50 Construction Forms for Contractors with a CD-ROM
- 68.50 Contractor's Guide to QuickBooks 2015
- 57.00 Contractor's Guide to QuickBooks Pro 2010
- 56.50 Contractor's Guide to QuickBooks Pro 2009
- 54.75 Contractor's Guide to QuickBooks Pro 2008
- 49.50 Contractor's Plain-English Legal Guide
- 38.00 Contractor's Survival Manual Revised
- 65.00 Craftsman's Construction Installation Encyclopedia
- 59.50 Electrician's Exam Preparation Guide 2014 NEC
- 54.50 Electrician's Exam Preparation Guide 2011 NEC
- 49.50 Electrician's Exam Preparation Guide 2008 NEC
- 38.00 Estimating Home Building Costs Revised
- 32.75 Handbook of Construction Contracting Volume 1
- 33.75 Handbook of Construction Contracting Volume 2
- 52.50 Home Building Mistakes & Fixes
- 28.50 How to Succeed w/Your Own Construction Business
- 52.50 Markup & Profit: A Contractor's Guide Revisited
- 87.50 Natl Construction Est. w/FREE Natl Estimator Download
- 88.75 Natl Home Improvement Est. w/FREE Natl Estimator Download
- 89.50 Natl Renovation & Ins. Repair Est. w/FREE Natl Estimator Download
- 88.50 Natl Repair & Remodeling Est. w/FREE Natl Estimator Download
- 55.50 Paper Contracting: The How-To of Constr. Management Contracting
- 24.75 Profits in Buying & Renovating Homes
- 33.50 Renovating & Restyling Older Homes
- 26.50 Roof Framing
- 24.00 Roof Framers Bible
- 7.95 Roofing Quick-Card
- 26.50 Rough Framing Carpentry
- 38.00 Roofing Construction & Estimating
- FREE Full Color Catalog

Prices subject to change without notice

Buy this title complete here: https://goo.gl/SGpTnl

Also available as an eBook (PDF), $44.75 at www.craftsman-book.com

488 pages, 8½ x 11, $89.50. Revised annually

www.costbook.com

Prices subject to change without notice

Free on the Internet! Download any of Craftsman's estimating databases for a 30-day free trial! www.craftsman-book.com/downloads