ESTIMATING EXCAVATION REVISED

By Deryl Burch
Revised by Dan Atcheson

• Turn your estimate into a bid.
• Turn your bid into a contract.
• ConstructionContractWriter.com
ACKNOWLEDGMENTS

The author wishes to express his appreciation to:

Gregg Lapore and Trackware, for help with Chapter 16.
Contents

1 Get Started Right ... 5
 Why Calculate Quantities 6
 Reading Plans and Specifications 8
 Accuracy Is Essential 12
 Record Keeping ... 16
 Understanding Plan or Drawing Measurements 18
 What If You Don’t Have Plans 20

2 The Site Visit ... 21
 Review the Plans First 21
 Make the Visit Productive 22
 Site Visit for a Sample Project 32
 Site Visit Checklist 35
 Don’t Forget Overhead 35

3 Properties of Soils ... 43
 Soil Classifications 43
 Pre-Construction Field Testing 46
 Soil Testing in the Lab 50
 Compaction Fundamentals 55

4 Reading Contour Maps 65
 Planimetric and Topographic Maps 65
 Understanding Contour Lines 68
 Benchmarks and Monuments 73

5 Area Take-Off from a Topo Map 75
 Comparing the Contour Lines 75
 Estimating with a Grid System 78
 Calculating Cut and Fill Areas 90
 Using Worksheets in a Take-Off 102
 Shortcuts for Calculating Quantities 109

6 Roadwork Take-Offs 125
 Plan and Profile Method 125
 Understanding Surveys 127
 Plan and Profile Cross Section Sheets 128
 Cross Section Method 132
 Calculating the Scale Factor 139
 Mass Diagrams ... 143

7 Irregular Regions & Odd Areas 151
 Finding Area Using Compensating Lines 153
 Finding Volume Using Total Area and Average Depth 154
 Finding Volume Using Compensating Lines with a Coordinate System 159
 Finding Volume Using the Trapezoidal Rule 167

8 Using Shrink & Swell Factors 177
 Soil States and Their Units of Measure 177
 Using Shrink/Swell Factors in Earthwork Estimates 178
 Ground Loss .. 181
 Estimating the Number of Haul Trips 182
 Material Weight Factors 183
 Pay Yards .. 185
9 **Topsoil, Slopes & Ditches** \(\ldots\) 187
 - Dealing with Topsoil \(\ldots\) 187
 - Calculating Net Volumes for Earthwork \(\ldots\) 193
 - Slopes and Slope Lines \(\ldots\) 197
 - Estimating Trenches \(\ldots\) 202
 - Drainage Channels \(\ldots\) 202
 - Utility Trenches \(\ldots\) 205

10 **Basements, Footings, Grade Beams & Piers** \(\ldots\) 211
 - Estimating Basement Excavation Quantities \(\ldots\) 211
 - Finding Volume — Outside Basement Walls \(\ldots\) 213
 - Calculating the Total Volume for Basement Excavation \(\ldots\) 222
 - Sample Basement Estimate \(\ldots\) 228
 - Sheet Piling \(\ldots\) 238
 - Estimating Ramps \(\ldots\) 239
 - Grade Beams and Piers \(\ldots\) 244

11 **All About Spoil & Borrow** \(\ldots\) 249
 - Underlying Costs of Spoil and Borrow \(\ldots\) 250
 - Spoil and Borrow Volume Calculations \(\ldots\) 251
 - Calculating the Volume of a Stockpile \(\ldots\) 253
 - Finding the Volume of a Stockpile of Unknown Height \(\ldots\) 256
 - Calculating Volume for a Stockpile of Set Area \(\ldots\) 261

12 **Balance Points, Centers of Mass & Haul Distances** \(\ldots\) 265
 - Balance Points to an Excavation Estimator \(\ldots\) 265
 - Balance Points to an Engineer \(\ldots\) 266
 - Reducing Haul Distances \(\ldots\) 267
 - Calculating Haul Distances \(\ldots\) 270

13 **Earthmoving Equipment: Productivity Rates and Owning & Operating Costs** \(\ldots\) 281
 - Machine Power \(\ldots\) 282
 - Machine Speed \(\ldots\) 287
 - Machine Production \(\ldots\) 293
 - Productivity Calculations for a Simple Dirt Job \(\ldots\) 296
 - Equipment Production Rates \(\ldots\) 302
 - Owning and Operating Costs \(\ldots\) 309
 - Calculating the Overhead \(\ldots\) 313
 - Adding the Profit \(\ldots\) 316
 - Bid Price per Cubic Yard \(\ldots\) 316

14 **A Sample Take-off** \(\ldots\) 317
 - General Specifications \(\ldots\) 318
 - Doing the Take-off \(\ldots\) 320

15 **Costs & Final Bid for the Sample Estimate** \(\ldots\) 415
 - The Bid Preparation Process \(\ldots\) 416
 - Overhead \(\ldots\) 420
 - Machine Selection \(\ldots\) 420

16 **Computers & Computer Estimating Programs** \(\ldots\) 515
 - Computers and Earthwork Programs \(\ldots\) 515
 - Taking off an Earthwork Project \(\ldots\) 517
 - Working with Plans on Separate Sheets \(\ldots\) 533
 - Importing CAD Drawings \(\ldots\) 533
 - Additional Programs \(\ldots\) 535
 - Solving Complex Earthwork Problems with Software \(\ldots\) 537
 - In Conclusion \(\ldots\) 539

Index \(\ldots\) 541
Construction cost estimating is demanding work, no matter what type of construction is involved. But I think estimating earthwork is the hardest of all. Why? For two reasons: First, excavation has more variables and unknowns — you don’t know what’s down there until you start digging; second, you have to rely on information from many sources — some of which may not be accurate.

That’s why every earthwork estimator needs special skills:

- The ability to read plans and specifications
- An understanding of surveying and engineering practice
- A facility with mathematical calculations
- The ability to anticipate environmental and legal issues
- An abundance of good common sense

If you can bring common sense to the task, this manual will show you how to do the rest. I’ll help you develop all the skills every good earthwork estimator needs.

Of course, I can’t cover everything on every type of job. But I’ll include the information most earthwork estimators need on most jobs. Occasionally, you’ll have a job that requires special consideration. But if you understand the principles I’ll explain here, you should be able to handle anything but the most bizarre situations.

A couple of subjects I think are important to cover here are the “by hand” approach to many earthwork problems, as well as the basics of computer earthwork estimating software. Both are meaningful topics for the earthwork estimator today. I’ve met many younger estimators who do earthwork take-offs with a computer who can’t even
describe what the existing or proposed surfaces of the project would look like in the real world. Finding the centerline of a sloping surface in a basement requires knowledge based on the experience of doing “by hand” or manual earthwork take-offs. Those who’ve calculated earthwork take-offs on paper will make better use of their software. So, even though computers are used more and more for earthwork project take-offs, having a background in the math involved in project calculations will improve your capabilities when using a computer program. While computer programs generally don’t make mistakes, it’s very common for a mistake to be made by the person feeding the data into the computer. If you haven’t a reasonable idea of what the result should be, you won’t know if the software has given you a completely wrong answer. No software is a substitute for good judgment and sound estimating experience.

In this first chapter, I won’t do much more than touch on a few important points you should understand:

1. why you have to estimate quantities
2. the importance of plans and specs
3. working accurately
4. keeping good records

After making these points in this chapter, I’ll describe a step-by-step estimating system, from making the site survey to writing up the final cost summary. I’ll teach you a process for making consistently accurate earthwork estimates. Part of this process is calculating the cubic yards to be moved. That’s the heart of every earthwork estimate. I’ll cover quantity estimating in detail. Then I’ll explain how to find labor and equipment costs per unit. We’ll also consider soil and rock properties and how the equipment you use affects bid prices.

Why Calculate Quantities?

In the past, many smaller dirt jobs were bid on a lump-sum basis rather than by the cubic yard. Dirt contractors based their bids on guesses: What equipment will I need and how long should it take? Making estimates this way overcame a big problem for many of these excavation contractors — they didn’t know how to estimate soil and rock quantities.

I think those days are over. Today, fuel and labor costs are too high and the competition is too intense to risk “seat-of-the-pants” guesses. A few mistakes and a couple of surprises and you’re going to be looking for some other type of work. Only the best survive for long in this business. And most of the survivors know how to make accurate bids by the cubic yard. Fortunately, making good quantity estimates isn’t too hard once you’ve mastered a few simple skills. I hope that’s why you’re reading this book.
I’ve found that all good earthwork estimators are also good at calculating earthwork quantities. Here’s why:

No one’s going to do it for you. You have to do it yourself or it’s not going to get done right. Many engineers, architects, and even some builders know how to figure soil and rock quantities, but few take the trouble to do it. Instead, they depend on the earthwork estimator to do it. If the engineer calculates quantities, he’ll give the numbers in cubic yards, but won’t specify what types of cubic yards are being presented. I’ve known some engineers who don’t understand the concepts of soil swell and shrinkage. They simply give the cubic yards based on length × width × depth calculations and leave it up to the estimator to convert those quantities into loose and compacted cubic yards for the cut and fill quantities, respectively. I’ve also found that engineers make mistakes in calculating the quantities. There’s an old estimator’s saying: “An engineer does not an estimator make.” These are two totally different professions.

Today, most owners, engineers and architects request excavation bids based on the cubic yards moved. That’s now the accepted procedure for most projects, from single-family homes to roads and commercial jobs. Some projects are still bid lump sum, but those are the exceptions. It’s common for the actual amount of dirt moved to be more or less than expected, so the best way to protect your business is to bid by the cubic yard. If it turns out you have to move more dirt than the plans show, instead of having to eat the extra cost, you’ll get paid for it. It’s as simple as that.

General and Special Quantities

If you agree that excavation bids should be based on quantity estimates, the next step should be obvious. Every estimate must start by figuring the quantity of soil to be moved.

I recommend you begin any project estimate, no matter how large or small, by dividing the excavation into two categories: general quantities and special quantities.

General quantities include any work where you can use motorized equipment such as scrapers, hoes and loaders at their designed production rate.

Special quantities include anything that requires special care or lower production rates. Examples are most rock excavation, nearly all hand excavation, and backhoe work around sewer lines, underground utilities, or existing structures. Naturally, prices for special quantities are higher than prices for general quantities.

Keeping these two quantities separate protects you. Most excavation contracts have a clause that covers extra work. Unanticipated rock deposits, special soil problems and unusual trenching problems are extra work that you should be paid extra for. If you’ve bid a higher price for special quantities, you’ll get paid at that price per cubic yard for the additional work. Otherwise you could end up chipping out rock at the price of moving sand.
Calculating Cubic Yard Cost

Here’s the basic formula for costs per cubic yard: Labor and equipment cost per hour multiplied by the hours needed to complete the work, divided by the cubic yards of material to be moved, or

\[
\text{Cost per CY} = \frac{\text{Cost per Hour} \times \text{Total Hours}}{\text{Total Cubic Yards}}
\]

Does that seem simple? It’s not. You may know your hourly labor and equipment costs right down to the last penny. But estimating the time needed is never easy. And calculating volumes for sloping and irregular surfaces is very demanding work.

Here are a few things about the formula for computing costs per cubic yard that you should take note of.

1. It’s based on labor and equipment costs for your business. That’s important and I’ll have more to say about it later.

2. It assumes you know the quantity of soil or rock to be moved. That’s going to take some figuring.

3. Even after you’ve calculated the cost per hour and quantity of soil, you’re not finished. You need to estimate the time needed. Usually that’s the hardest part. To do that, you have to decide on the equipment (method) to use.

Of course, the quantity of material (yardage) is a very important part of our cost formula. But the excavation method (type of equipment) also has a major influence on cost. The most expensive equipment (cost per hour) will usually be the most productive (move soil at the lowest cost). But the machine with the largest capacity isn’t always the best choice for every outhaul. I’ll explain why later. For now, just understand that making good equipment selections helps reduce costs.

Reading Plans and Specifications

Many excavation projects let out for bid are based on a set of plans. Plans are scale drawings that show the finished project. Plans are supplemented with written descriptions called specifications (or specs). Specs explain in words what the plans can’t or don’t show. Ideally, the plans and specs, read together, should answer every question about the job. They shouldn’t leave anything up to interpretation. The better the job done by the engineer or designer, the more likely the plans will be clear and complete.
Plan reading is an important skill for every earthwork estimator. But this isn’t a book on plan reading. If you need help with reading plans or you don’t understand the plans and drawings in this book, pay a visit to your local library or search the internet. You’ll find there are several manuals that explain basic plan reading.

Look for Notes on Special Problems or Conditions

As an excavation estimator, you’re expected to understand every detail in the plans and specs for the jobs you bid. Read these documents completely. They’re worth careful study. Note everything that affects your excavation work. Some engineers and architects aren’t very well organized. They can put instructions and notes almost anywhere on the plans. Read every page carefully, regardless of what you think it’s about. Use a yellow highlighter and mark anything in the specifications that affects your work, such as the type of compaction required for the fill material. That’ll make it easier to find later if you need to look it up.

Utility Lines

Pay particular attention to notes that spell out the contractor’s responsibility. For example, you may find a note somewhere on the plans that relieves the engineer or architect of responsibility for damage to utility lines. It may say something like this:

NOTE: While every precaution has been taken to show existing utilities in their proper location, it is the contractor’s responsibility to determine their actual location. No assumption should be made that no other utility lines fall within the limits of construction.

That means that if you break a pipe, such as a water main or a gas line that wasn’t marked on the plans, it’s entirely your fault and you have to shoulder the costs. So if you suspect utility lines may be a problem, ask the utility companies to locate their lines for you. Most will be happy to do that at no cost. But they may want ample advance notice.

Changed Conditions

Also pay attention to notes on natural obstacles (such as rock) or anything that’s buried on the site. Is there an abandoned underground storage tank or old basement in the area to be excavated? The plans may also mention drainage problems and unsuitable soil deposits, probably in the cross-section drawings or special provisions of the specs.

A.I.A. contracts, and most federal government contracts, spell out what happens if you encounter changed conditions at the jobsite. An example of changed conditions would be if the soil type isn’t what was indicated in the contract documents, or isn’t normal for the type of work you’re doing. In that case, you’re entitled to extra pay for dealing with those changed conditions.
Owners and engineers have written volumes of contract language excusing themselves from liability for test borings and other information they provide to bidders. Some contracts even say that you’re responsible for conditions at the site, if those conditions aren’t as indicated in the bidding documents. That’s ridiculous. To protect your business, be sure there’s a *changed conditions clause* in the contract so you’ll get extra pay if conditions aren’t what the test borings showed, or conditions are very unusual for the type of work being done.

Other Costs

Search the plans and specs for everything that may affect cost. That’s always your starting place. But it’s not the end of your search. Many cost items won’t show up in either the plans or specs. For example, you’ll have to find out from the city or county building department what permits will be required. Also, city, county or federal law may set minimums for wages, employee benefits and insurance coverage.

Here’s another pitfall to watch for: Who pays to have the project staked out by a surveyor or engineer? In most cases, the designer will pay for surveying — the first time. If you knock over any survey stakes during actual work, you’ll probably have to replace them at your own expense. Work as carefully around the stakes as possible. But if job layout makes it impossible to avoid moving stakes, allow enough in your bid to pay for another survey.

Make sure you understand how you’ll be paid. On larger projects, you’re usually paid per cubic yard, based on the difference between the original soil cross section and the cross section when work is finished. We’ll talk more about cross sections later in this book.

On many smaller projects, your payment may be based on the engineer’s estimate of yardage. If that’s the case, look for a provision in the specs that gives you an option to have final cross sections made at your own expense. Experience will help you decide if a final set of cross sections is to your advantage. But I recommend that you always take off quantities yourself. Don’t assume the plans are right. Anyone can make a mistake, but you could end up paying the price.

Undercutting

Undercutting is removing additional dirt from an area below the finished grade line. There are several situations where this is necessary. The most common is where clay or a rock ledge is close to, but not above, the finished grade line. Figure 1-1 shows a typical situation with a rock ledge below the surface. Most structures can’t be built directly on rock. If the rock weren’t there, you would excavate to the finished grade line and be done. But because the rock is just below finished grade, you have to cut deeper. That’s the undercut. Then you have to backfill the undercut with a suitable material, such as select sand. The sand provides a buffer between the rock and the foundation.
There’s probably nothing in the specifications that gives you the right to collect for undercutting and backfill. But it’s expensive work and the cost shouldn’t come out of your pocket. Where undercutting may be necessary, include it in your bid as a separate item on a per cubic yard measure.

Undercutting is also needed when trenching for underground utilities, such as storm drains and sanitary sewer lines. The undercut makes room for bedding material to be placed under the pipe. Most plans will show only a designated flow line elevation. But based on the plans and your good judgment, you’ll have to decide how much and what type of bedding to install below the pipe. Each cubic yard of bedding requires a cubic yard of undercutting. Some engineers specify this, and others don’t. Figure 1-2 shows an example. Undercutting may also be required on roads, parking lots and sidewalks — anywhere there’s a load on the soil.

Overfilling is the opposite of undercutting. When backfilling a large area, you can usually bring the backfill right to grade without cutting away excess backfill. But in a small area, it’s usually easier to bring the area

Figure 1-1
Undercutting for rock

Figure 1-2
Undercutting for pipe bedding
above the final grade line by 2 to 4 inches, then cut off the excess. This is still called undercutting. Of course, you can’t expect to get paid for removing the 2- to 4-inch excess. But it’s still a cost of the job.

Accuracy Is Essential

Accuracy is the essence of estimating. If you can’t work accurately, you’re in the wrong business. But don’t get me wrong. I don’t mean that you have to account for every spadeful of soil on every estimate. On small projects, there are times when you can ignore small differences in elevation. On most jobs these small plus and minus areas will average out to almost nothing. But a 1-inch mistake in elevation over the whole job can cost you thousands of dollars. Even a 1/16-inch error over a few acres can hurt you.

Here’s an example. Assume you’re bringing in fill on a city lot measuring 125 feet by 150 feet. Because of a mistake in grade, your estimate of imported soil is wrong. It leaves the entire site 1 inch below the specified finished grade. How much more soil will be needed to correct the 1-inch mistake?

Here’s the formula for volume:

$$\text{Volume (in cubic feet)} = \text{Length (in feet)} \times \text{Width (in feet)} \times \text{Depth (in feet)}$$

In this example, you know the length and width in feet, but the depth is only 1 inch. To use the formula, convert 1 inch to a decimal part of a foot. You can either refer to the conversion chart (see Figure 1-3) or divide 1 by 12, since 1 inch = $\frac{1}{12}$ foot. Either way, you’ll find that 1 inch equals 0.0833 feet.

Now you’re ready to use the formula for volume:

$$\text{Volume (CF)} = 125 \times 150 \times 0.0833$$

$$= 1,561.88$$

How many cubic yards is that? Since there are 27 cubic feet in a cubic yard, divide the cubic feet by 27:

$$\text{Volume (CY)} = \frac{1,561.88}{27}$$

$$= 57.8$$

Trucking in almost 58 cubic yards of soil won’t be cheap. If imported soil costs you $25 a cubic yard, your 1-inch mistake is a $1,450 error. That could make the difference between profit and loss on this job.
Your Estimating Procedure

The more organized and logical your estimating procedure, the more accurate your estimates will be. If you have the tools, papers and information you need close at hand, you’re off to a good start. Then you can focus your attention and concentration on producing an accurate estimate. If you’re cramped for space in an uncomfortable office with poor lighting, and trying to work without all the equipment and information you need, errors are almost inevitable.

Work Area and Equipment

Start by organizing an efficient work area. It should be large enough so you can lay out all the plans on a table and still have room to write and calculate. Provide enough light to make reading comfortable, and keep the work area free of shadows. This is especially important when working with transparent overlays or other light-duty paper where you might mistake shadows for lines.

Although it’s not essential, I like using a light table. You can place a drawing on it, overlay it with another paper, and see through both of them. It’s great for working with plan and profile sheets, overlays on grid, or take-off sheets. It’s a good idea to tape a sheet of drafting paper over a site plan. You can set up a grid and write all your calculations on the paper and file it away after the take-off is done. That way, you won’t be marking up the drawings if you have to return them to the engineer. You don’t want the engineer or anyone else to see how you did your take-off.

Figure 1-3
Inches to decimal feet conversion chart

<table>
<thead>
<tr>
<th>Inches</th>
<th>Decimal feet</th>
<th>Inches</th>
<th>Decimal feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16</td>
<td>0.0052</td>
<td>7/8</td>
<td>0.0729</td>
</tr>
<tr>
<td>1/8</td>
<td>0.0104</td>
<td>15/16</td>
<td>0.0781</td>
</tr>
<tr>
<td>3/16</td>
<td>0.0156</td>
<td>1</td>
<td>0.0833</td>
</tr>
<tr>
<td>1/4</td>
<td>0.0208</td>
<td>2</td>
<td>0.1667</td>
</tr>
<tr>
<td>5/16</td>
<td>0.0260</td>
<td>3</td>
<td>0.2500</td>
</tr>
<tr>
<td>3/8</td>
<td>0.0313</td>
<td>4</td>
<td>0.3333</td>
</tr>
<tr>
<td>7/16</td>
<td>0.0365</td>
<td>5</td>
<td>0.4167</td>
</tr>
<tr>
<td>1/2</td>
<td>0.0417</td>
<td>6</td>
<td>0.5000</td>
</tr>
<tr>
<td>9/16</td>
<td>0.0469</td>
<td>7</td>
<td>0.5833</td>
</tr>
<tr>
<td>5/16</td>
<td>0.0521</td>
<td>8</td>
<td>0.6667</td>
</tr>
<tr>
<td>11/16</td>
<td>0.0573</td>
<td>9</td>
<td>0.7500</td>
</tr>
<tr>
<td>3/4</td>
<td>0.0625</td>
<td>10</td>
<td>0.8333</td>
</tr>
<tr>
<td>13/16</td>
<td>0.0677</td>
<td>11</td>
<td>0.9167</td>
</tr>
</tbody>
</table>
A large wall-mounted marker board is useful for showing, studying, or sharing an equation or idea, and can be a very handy addition to your work area.

A good calculator is a must. I recommend buying a calculator with both a digital and a paper printout. You need the printout to check your figures. Make sure you have an engineer’s scale and drafting triangles for checking and drawing lines, a small magnifying glass, tape for holding overlays, and the normal collection of pencils, pens, erasers, and paper.

Later in the book we’ll talk about using a planimeter to take off quantities. Although it’s relatively expensive, a good planimeter will soon pay for itself. Take care to select one that’s sturdy and has all the needed instructions and attachments.

A computer is even more expensive, but there are few estimators now who aren’t using one. There are programs on the market that can handle anything from simple calculations to a complete estimating program, with cross sections, quantities and printouts. But no program is a substitute for a good estimator who understands estimating procedures and practices — which is the purpose of this book.

There are two advantages to using a computer. The first is time, an estimator’s most valuable asset. A computer can help make your time more productive. Second, a computer makes it easier to keep cost figures for equipment and labor. Records from past projects and estimates can make current estimates more accurate.

If you don’t currently use a computer in your work, don’t jump in without first doing some research. There’s tons of estimating software, thousands of different computers on the market, and hundreds of dealers. Take the time to make yourself familiar with the options. Talk to dealers. More important, talk to other estimators who use computers in their estimating. Read trade magazines, especially the ads for estimating software. And don’t go out and buy a computer and then look for estimating programs to run on it. First, choose the estimating program you like, and then buy the computer that will run that program. Otherwise, you may find the computer you bought won’t run the program you like.

The Work Process

When you’ve got your work area and equipment set up to work efficiently, you’re on the path to accurate estimates. To stay on that path, it’s important to approach the work with a logical and organized procedure. That speeds up the work and reduces mistakes. Let me describe the method that works for me. I think it’ll work for you, too.

When starting a project, first read all documents describing the job. Take notes on any situation that’s not a normal work requirement. Are there utilities that must not be disturbed? Do the documents indicate specialized material types from soil boring logs? Do they stipulate any arrangement for rock on the site? Watch carefully for the compaction and testing requirements. Testing is expensive and your project could be delayed while testing is being performed. Look for any special provisions set out by the designer. Then head out for a field visit. You’ll find details about the site visit in the next chapter.
After returning from the field, review the documents again, looking for unusual situations that the site visit brought to your attention. Then make a complete written outline of all work that needs to be done, in the order in which it will be performed. Set up files for each separate section. Make a list of additional data such as quad sheets, local conditions, and any other information you need to gather.

Here’s the order I usually use.

1. Consider any drainage, traffic or work zone protection that needs to be done. Are there any onsite streams that must remain open, or roadways to maintain? These would probably be lump sum items, not items you’d take off quantities for. Just make sure you don’t miss any of these special items.

2. After studying the plans and the site, you should have a good idea if there’s enough fill on the site, or if you’ll need a borrow pit. Will you need a place to put excess material offsite? Begin now to make arrangements for needed borrow and storage sites, sampling of material for approval by the engineer, and purchase of any material that’s needed. Also, check with heavy equipment dealers in the area to make sure any specialized equipment you’ll need to do the project is available for rent. I’ve even heard of contractors who take a risk and rent equipment in advance in order to keep the competing contractors from getting the equipment.

3. Now consider the topsoil requirements. Review the material sample, the requirements for replacement, and availability of storage area on the site. Calculate the amount of usable material and the amount of waste that must be disposed of.

4. Will there be any special excavation, like rock work or the removal of existing structures or facilities? Make sure you include all work and any special equipment you’ll need. Will you need to rent equipment? What about rock drills and saws, blasting material, or cranes?

5. Begin calculating the general quantities with the cut or fill work over the entire project. Start in the same place and proceed throughout the project the same way for every estimate. One way to make sure you cover the entire project is to set up a grid system with a corresponding file system. As you finish work in each grid, mark it off, file it, and move on to the next grid.

6. Next, calculate all the utility lines, keeping the figures for each area separate. Be especially careful in estimating the tie-in between new and existing lines. Allow a little extra time for lines that aren’t exactly where the plans show them to be.

7. Then consider the roads, parking lots, and paved or special drainage ditches. Again, keep the quantities for each separate. One note of caution: Remember to consider the base and sub-base when figuring final elevations.
8. Buildings, basements, sidewalks and other similar structures are next. After you’ve calculated each structure separately, add them all together to get a structure total.

9. Finally, calculate the topsoil. And don’t forget that if you’ve used a borrow pit, you may have to place topsoil there also.

10. Now you’re ready to start putting together all that information to come up with a realistic quantity total for the complete project. Fill out the final quantities sheet. Remember to attach all worksheets, scratch paper and calculator printouts so you can recheck your totals.

Review your final sheet, looking for potential problem areas. If possible, have someone else check all your calculations and extensions. If that’s not possible, set the estimate aside and go through it again a few days later. You’ll have a fresh approach that may spot errors or omissions.

The last step is to go through all the documents and make sure they’re in order. Then file them. Don’t throw anything away — not even the scrap paper. Why are those records valuable? Keep reading; that’s next.

Record Keeping

Once you’ve learned to read plans carefully and work accurately, there’s still one more important step in good estimating practice: record keeping.

Think of your estimates as accumulated wisdom. Treasure them. Keep them handy. Make sure they’re easy to understand. They should show how each figure was developed. Why? There are at least four reasons.

First, planning the work is a big part of every estimator’s job. You can’t estimate any type of earthwork without making decisions about equipment. Once you’ve selected equipment for estimating purposes, document your choice on the estimate worksheets.

If your bid is accepted, you’ll probably want to do the work with the same equipment assumed in the estimate. What if months have gone by and you can’t remember how the figures were developed? You have to start selecting equipment and estimating costs all over again. If the equipment assumed in your estimate isn’t the same as the equipment actually used, comparison of estimated and actual costs may be meaningless.

Second, you’re going to refer to most estimates many times over months or even years. You shouldn’t have to guess about how each figure was developed. That wastes time and can exhaust your patience. I’ve seen estimators who should know better...
the back of an envelope to figure special quantities. After entering the final cost, they discard the envelope. Later, if there’s a question about the estimate, how can they verify the figures? They’re gone!

When you write a calculation or create a drawing for possible future use, take the time to clearly describe the calculation and label each drawing very clearly. Over the years, I’ve created good ways to solve problems, and then later discovered that I didn’t know how I came up with those solutions so I could duplicate them. Because I didn’t make good notes or include well-labeled drawings, my solutions were one-time successes that I couldn’t carry forward for future work. Now, whenever I find calculations that are needed over and over on different projects, I carefully draw diagrams and write out the equations, and then place them in a special book for future reference. (See Figure 1-4.)

Third, old estimates are invaluable when compiling new estimates. Every estimate, especially if you actually did the work, provides a frame of reference for future jobs — even if labor and equipment costs have changed.

Fourth, every estimator makes mistakes. That’s no embarrassment. But repeating mistakes is both foolish and expensive. The best way to avoid repeating mistakes is to preserve every scrap of estimating evidence — in a neat, tidy, well-organized file. Make notes on what worked and what didn’t. Review those estimates and notes when estimating similar jobs.
Estimating Excavation

Save everything. Good record keeping can come in handy as backup to justify a claim for extra work or as a means of proving your claim in court if a dispute goes into litigation. Also, someday you may want to write a book. I saved my notes and estimates and wrote a book. You’re reading it.

Use Public Records

To the professional estimator, there’s no such thing as too much cost information. Collect all the estimating data you can. It helps if you know where to look for it. I canvass city and county engineering departments, public works departments and maintenance departments for whatever information they can provide. They know about bid prices, soil conditions, abandoned streets, utility lines, sewer, and water problems. Use the resources available from your city and county government.

Aerial maps at the county tax office and contour maps from the United States Geological Survey offer clues to possible water and soil problems. There are USGS offices in most states. They’re often located in the capitol, or in cities with universities. Check your local phone book or local engineering groups for the address of the nearest office. City, state and county highway departments will have information on soil problems they’ve found under highways in the area.

Understanding Plan or Drawing Measurements

There are three scenarios you may encounter with plans or drawings that will make your job as an earthwork estimator more difficult. They are: drawings that have been enlarged or reduced; a drawing that has only a measurable area; and being forced to measure a plan drawn in an engineering scale with a common ruler. Let’s look quickly at how to deal with these three situations.

Determining the Actual Scale of a Plan

When a print has been reduced or enlarged, you can still use the given scale to measure plan dimensions accurately. The factor by which the plan scale has been reduced or enlarged can be determined by the following formula:

\[
\text{Scale Factor} = \frac{\text{Printed Plan Dimension}}{\text{Scaled Dimension}}
\]

(assuming original scale)
Example: You are given an original scale of 1" = 20'. Find the scale factor if a given plan dimension of 250 feet measures 55 feet at the original scale of 1" = 20':

\[
\text{Scale Factor} = \frac{250'}{55'} = 4.545
\]

You’ll need to multiply any dimension scaled at 1" = 20' by 4.545 in order to obtain the correct length. Note: Never apply the factor to a printed dimension entered directly into your calculator. Apply the factor only to dimensions measured with your scale.

Some computer programs have a “compensate scale” feature that automatically determines the correct scale to use on any enlarged or reduced drawing; however, you can check your accuracy in setting the compensate scale feature by using the following formula:

\[
\text{Actual Scale} = \frac{\text{Printed Dimension} \times \text{Original Scale}}{\text{Measured Dimension}} \\
\text{(using original scale)}
\]

Example: Determine the actual scale of the drawing discussed in the previous example.

\[
\text{Actual Scale} = \frac{250' \times 20'}{55'} = 90.91 \text{ feet per inch}
\]

Determining Plan Scale When Only Area is Given

In this situation you have a grading plan with a plan scale of 1" = 40'. The engineer has also given you the dimensions of the site, with an area of 5.76 acres. However, no other dimensions are given on the plan, not even a scale bar. Using the given plan scale provided, the work area measures 18.3 acres. Obviously, the plan has been reduced, making the given scale incorrect. What scale should you use to produce the correct results? Use the following equation to solve the problem:

\[
\text{Correct Scale} = \frac{\text{Given Scale} \times \sqrt{\text{Given Area}}}{\sqrt{\text{Site Perimeter Area}}}
\]

\[
= \frac{40 \times \sqrt{5.76}}{\sqrt{18.3}}
\]

\[
= 22.44 \text{ feet per inch}
\]
When You Have the Wrong Measuring Tool

Years ago, while visiting a friend, I was asked to measure the length of a line on a plan drawn at an engineering scale of 1" = 40', and all my friend had to measure the line with was a common ruler. The line measured at $3\frac{3}{16}$ inches long. To convert the length to the correct scale, I expressed my measured length as a decimal equivalent of inches and multiplied the result by the plan scale. The decimal equivalent of $3\frac{3}{16}$ inches is 3.1875 inches, so my calculation was:

$$3.1875 \text{ inches} \times 40 \text{ feet} = 127.5 \text{ feet}$$

To apply this principle to areas, convert each area dimension to its engineering dimension and multiply them together. For example, if an area measured with a ruler is $3\frac{1}{2}$ inches by $1\frac{1}{4}$ inches on a plan drawn at 1" = 40', it has actual dimensions of 3.5 and 1.25 inches in decimal form. Convert these dimensions to engineering scale dimension:

$$3.5 \text{ inches} \times 40 \text{ feet per inch} = 140 \text{ feet}$$
$$1.25 \text{ inches} \times 40 \text{ feet per inch} = 50 \text{ feet}$$

So the actual area at a 40-foot scale is:

$$140 \text{ feet} \times 50 \text{ feet} = 7,000 \text{ square feet}$$

What If You Don’t Have Plans?

Up to this point, we’ve assumed that you’re bidding the job from plans and specs provided by an architect or engineer. But you may be asked to bid on a small job that wasn’t designed by an engineer or architect. Then you’ll have to create your own plan. It may also be up to you to determine quantities and prepare a contract.

In any case, always figure soil quantities and get a written contract on every job, large or small. The responsibilities and liabilities are all yours, so plan and execute your bid with care. Use the procedures and guidelines in this book — even if there are no plans.

If the owner doesn’t have a plan prepared by an architect or engineer, collect as much information as possible from the owner. Does he or she know of any soil problems at the site? Is it your responsibility to request the survey and staking? Are any permits needed? When should the job be completed? Where are the utility lines? What conditions might delay the work?

Whether the job is big or small, whether you’ve got no plan or a very complete plan prepared by the best engineering firm in the state, make a visit to the site as part of your estimating procedure. That’s important — important enough to be the subject of an entire chapter. And that’s the next chapter in this book.
Index

A
A.I.A. contracts, changed conditions........ 9
Access, equipment..........................267
Accessibility, jobsite.......................23
Accounting fees, overhead...............313
Accuracy, rounding, effect on........84-85
Actual scale, determining.................18
Adobe..45
Aerial maps.......................................18
Altitude
 definition......................................290
 effect on horsepower......................290
American Association of State Hwy
 and Transportation Officials........55
AASHTO T99-70.................................56
AASHTO T99-70.................................56
American Society of Testing Materials
 ASTM D-698....................................56
 ASTM D-1557...................................56
American Soil Conservation Service
 (ASCS)...43
 Angle of repose..........................212
 finding..258
 forces on...................................259,261
 stockpile..................................285
 Angle, reverse................................256
 Annual costs, equipment.................310
 Arc section................................135,137-138
Area
 circle..122,206
 compensating lines,
 using......................................152-154,160
 coordinate system, using.............162-163
 formulas....................................151
 irregular shapes..........................152
 jobsite, formula for...................190
 oblique triangle............................153-157
 section ends................................132
 Trapezoidal Rule, using.............167-168
 triangle......................................97
 worksheet...................................103
 worksheet, oblique triangles.........155-157
Area take-off, from topo map...........75-123
Areas
 available for stockpile..............261-263
 demolition, computer estimating.....520-521
 naming, computer estimating.........523-524
ASCS (American Soil Conservation
 Service)..43
Asphalt road, coefficient of traction....289
ASTM D-698 and D-1557.....................56
Available power
 altitude effect on.......................290
 machine.......................................287
 traction effect on........................288-289
Average
 compactor operating speed................306
 end area, cross section..............140-141
 grid elevation.............................106-107
 slope line..................................214
 Average depth
 cut or fill................................118
 formula...................................89,114
 triangular mound.........................158
 Average end area method
 cut and fill volumes…………………96-98
 formula..................................140
 trapezoidal prism........................100
 volume formula..........................100

B
Backhoe
cycle time....................................512
production rate............................512
Balance points
engineers.......................................266-267
in excavation..............................265-266
mass diagram................................149
Balancing site................................125
borrow and spoil on two jobsites.......253
computer estimating......................528-530
 topsoil....................................192-193
Bank cubic yards (BCY)178-179
Bank material
 approximate weights......................183
 defined....................................178
 Bank run gravel............................44
 Bank slopes, allowable..................48
 Barricades, traffic.......................30
 Baseline
 horizontal................................279
 vertical...................................279
Basement excavation
 calculating total volume...............222-228
 equivalent area................................214-215
 estimating................................211-243
 estimating ramps........................239-243
 finding real depth......................227-228
 sample estimate..........................228-224
 shortcut calculations..................234-235
 slope angles................................212
 wall dimensions...........................217-218
 work space allowance....................212-213
 worksheet, volume calculations.........224
 Basement wall dimensions...............217-218
 BCY (bank cubic yards)....................178-179
 Bedding material
 calculations................................206-207
 trench......................................205
 Bedrock.....................................44
 Beginning station..........................142
 Bells
 net volume chart..........................247
 volume calculations.....................245-248
 Benchmarks................................73-74
 staking elevations........................129
 Berm, finding volume of................171-173,175
 Bias tires, rolling resistance...........282
 Bid
 pay yards..................................185
 price..316
 process....................................281,416
 record keeping...........................16-17
 special quantities.......................7
 subcontracting excavation..............415
 Bid preparation form, sample..........423
 Bid, sample..................................415-513
 bid items...................................417-421
 cast iron pipe..............................419
 clearing and grubbing costs...........417
 earthwork costs............................418
 machine owner OPERATING costs......421
 machine selection.........................420-421
 manholes and catch basins...............419
 mobilization costs........................417
 office building footing..................420
 overhead....................................420
 shop building footing....................420
 subcontracting excavation..............415
 summary sheet..............................422
 topsoil costs................................417-418
 utility trenches............................418
 Bid sheet.....................................417
 Blue Book values............................309
 Boost time, pusher units................304
 Boring log..................................46-47
 Borings, soil
 computer estimating.....................531
 excavation, dissimilar soils.........236-237
 locating ground water..................539
 Borrow..249-263
 balancing between jobs..................253
 definition...................................249
 hauling.......................................250
 Borrow pit
 costs..250
 distance to site...........................23-24
 locating.................................267-270
 Bottom-of-lake contour....................72
C

<table>
<thead>
<tr>
<th>CAD (computer aided drawing)</th>
<th>importing, computer estimating</th>
<th>533</th>
</tr>
</thead>
<tbody>
<tr>
<td>integrating proposed contours</td>
<td>534</td>
<td></td>
</tr>
<tr>
<td>Calculating earthwork quantities</td>
<td>6-8</td>
<td></td>
</tr>
<tr>
<td>cubic yard costs</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>end areas</td>
<td>132-143</td>
<td></td>
</tr>
<tr>
<td>keep formula book</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>missing corner</td>
<td>116-117</td>
<td></td>
</tr>
<tr>
<td>shortcuts</td>
<td>109-116</td>
<td></td>
</tr>
<tr>
<td>special quantities</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>using equivalent area</td>
<td>214-215</td>
<td></td>
</tr>
<tr>
<td>Calculating travel time</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Calculator, use in estimating</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Caliche</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Carpenter’s square, finding stockpile height</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Cast iron pipe costs, sample bid</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>calculations</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>Cast, soil</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Catch basins, sample bid</td>
<td>419</td>
<td></td>
</tr>
<tr>
<td>calculations</td>
<td>447-450</td>
<td></td>
</tr>
<tr>
<td>CCY (compact cubic yards)</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>Center of mass</td>
<td>265-266</td>
<td></td>
</tr>
<tr>
<td>depth not uniform</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>distance to edge</td>
<td>271-272</td>
<td></td>
</tr>
<tr>
<td>finding</td>
<td>270-272</td>
<td></td>
</tr>
<tr>
<td>formulas</td>
<td>272, 277-278</td>
<td></td>
</tr>
<tr>
<td>profile, example</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>vertical, finding</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>Center-to-center dimensions, way #</td>
<td>217-218</td>
<td></td>
</tr>
<tr>
<td>Centerline profile</td>
<td>125, 128</td>
<td></td>
</tr>
<tr>
<td>take-off</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>Centerline, road slope</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>Changed conditions</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>plans and specs</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Channels, drainage</td>
<td>202-203</td>
<td></td>
</tr>
<tr>
<td>Checklist</td>
<td>direct overhead costs</td>
<td>35-36</td>
</tr>
<tr>
<td>indirect overhead costs</td>
<td>37-38</td>
<td></td>
</tr>
<tr>
<td>Checklist, site visit</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>boundary lines</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>road/highway conditions</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>sample</td>
<td>39-41</td>
<td></td>
</tr>
<tr>
<td>site vegetation</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>soil</td>
<td>33-34</td>
<td></td>
</tr>
<tr>
<td>utilities</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>water problems</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Check totals, computer estimating</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>Circle</td>
<td>area</td>
<td>122</td>
</tr>
<tr>
<td>area formula</td>
<td>151, 206</td>
<td></td>
</tr>
<tr>
<td>center of mass</td>
<td>272-273</td>
<td></td>
</tr>
<tr>
<td>circumference formula</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>haul distance for</td>
<td>272</td>
<td></td>
</tr>
</tbody>
</table>
Index

prism calculations worksheet 113
shortcut calculations worksheet 115
under a structure .. 197
Cut-off, calculating 90
Cut depth, total, formula 193
Cut volume .. 107
calculations worksheet 110
depth calculations .. 110-111
Cycle time
bakehouse ... 512
definition ... 291
effect on cost .. 291
equipment ... 291-292
production rates .. 301
pusher units .. 304

D
Datum .. 65
Day operations, efficiency factors 296
Decimal feet, converting to 13
Decimals, rounding .. 84
degree measurements 66
Demolition areas, computer estimating 520-521
Density, soil .. 55
shrink/swell factor .. 177
Depreciation, machine 309-310
Dh
average, formula .. 89, 114
basement excavation 227-228
calculations .. 110-111
cut or fill ... 118
Designer objectives ... 129
Diagrams, mass haul 143, 147-150
Degree measures ... 204
Direct overhead items 35-36
Dirty job, sample ... 296-302
Dirty road, coefficient of traction 289
Disposal
goil .. 250
tires ... 312
Disposal site
soil ... 28
vegetation .. 32
Dissimilar soils, excavating 236-238
Distance
top to center of mass 271-272
haul, effect on cycle time 292
Ditches, drainage ... 202-203
Downhill travel, total resistance 285
Drain slope ... 201
Drainage
ditches, excavation ... 202-203
job site .. 63-64
planning for .. 63-64
site problems .. 25, 28
slopes ... 201, 197, 199
Drainage channel estimating 202-203
top of slab .. 203
Drywall pull
altitude, effect on .. 290-291
pounds of .. 287

E
Earthmoving equipment
Gradal excavator .. 203
production rates ... 302-305
repair factors .. 313
track or wheeled ... 25
trenching .. 208
Earthwork
calculating net volumes 193-197
calculating quantities 6-8
calculations, sample bid 423-441
computer estimating 517-534
costs, sample bid .. 418
cubic yard costs ... 8
drainage ... 78
embankment volumes 143, 147-148
estimating ... 128-129
estimating, skills required 5
grid system estimating 78
reading plans and specs 9
roadwork estimates 125
staking elevations ... 129
Earthwork software ... 515-516
balancing the site .. 528-530
color-coding drawings 518-519
determining rock blast areas 539
existing contour lines 519
elevations ... 519-520
existing structure elevations 520-521
leaving ground water 539
merging drawings .. 533
nesting areas ... 523-524
opening project file 517
problem solving with 537, 539
proposed contour lines 521-522
proposed structures 522-523
setting scales and safety options 518
strip and replace topsoil 523-525
summarizing information 528-532
top-of-curb elevations 522-523
using cross-section programs 535-536
using trenching programs 535-537
verifying take-off .. 526-528
Easements, jobsite .. 33
Easy percolation test .. 49-50
Efficiency factors
estimating production rates 295-296
productivity chart ... 296
Electrical lines, marking 29-30
Elevation
between contour lines 86
changes, cut/fill ... 193
contour line .. 68
exact .. 73
proportionate readings 86-88
real ... 74
sea level, establishing 66
Elevation points, computer estimating existing 519-520
proposed ... 521-522
parking lot ... 522-523
sidewalk .. 522-523
Elevations
averaging ... 107
existing and final grade 127
finding intermediate points 85-86
interpolating .. 82-88
project .. 74
recording on worksheet 104
sloping .. 197
staking at changes ... 126
Empty weight
calculating resistance 298-299
speed and gear .. 300
Encasement pipe
calculating volume .. 207
fill ... 207-208
End area calculations
calculating volume .. 207

End area calculations
arc sections, using ... 135, 137-138
finding volume .. 140-142
measuring strip, using 134-135, 136
meter, using ... 132-134
scale factor .. 139
stockpile volume .. 255
volume .. 262-263
End area excavation, pond, formula 73
Ending station ... 142
Engineer
balance points, using 266-267
earthwork design .. 128
elevations ... 147-148
soils ... 45, 47
Engineer’s scale ... 86-87
Engines, effect of altitude on 290
Equal depth contour method, worksheet 121-123
Equipment
access for .. 267
compaction ... 62-63
cubic yard costs ... 8
cycle time ... 291-292
depreciation .. 309
evaluate site needs .. 24
Gravel excavator .. 203
hourly cost summary sheet 513
load capacity .. 183-184
maintenance .. 292
operating cost factors 281, 287
operating cost records 281
operating speed and gear 300
owning/operating costs 281, 309-313
planning for .. 281
power, effect on costs 282
production rates .. 302-305
production rates, effect on costs 293-296
rolling resistance factors 283
selection, sample bid 420
soil weight load factors 183-184
speed, effect on costs 287
tire value ... 310
track or wheeled .. 25
trenching .. 208
weight calculations, sample bid 457
work space allowance 213
zones, mass diagram 149-150
Equivalent area
calculating excavation volumes 214-215, 217, 225
finding width for .. 217, 225
sample basement excavation 233
Estimating Excavation

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation bids</td>
<td>281</td>
</tr>
<tr>
<td>record keeping</td>
<td>16-17</td>
</tr>
<tr>
<td>special quantities</td>
<td>7</td>
</tr>
<tr>
<td>Excavation contracting, specializing</td>
<td>416</td>
</tr>
<tr>
<td>bulldozers</td>
<td>305</td>
</tr>
<tr>
<td>combi-roller</td>
<td>63</td>
</tr>
<tr>
<td>compactors</td>
<td>62, 305</td>
</tr>
<tr>
<td>excavators</td>
<td>303</td>
</tr>
<tr>
<td>fixed time operations</td>
<td>291</td>
</tr>
<tr>
<td>Gradall equipment</td>
<td>283-285</td>
</tr>
<tr>
<td>grade resistance</td>
<td>285-287</td>
</tr>
<tr>
<td>haul units</td>
<td>303</td>
</tr>
<tr>
<td>machine power</td>
<td>282</td>
</tr>
<tr>
<td>manhole shield</td>
<td>210</td>
</tr>
<tr>
<td>motor graders</td>
<td>307</td>
</tr>
<tr>
<td>owning/converting costs</td>
<td>308</td>
</tr>
<tr>
<td>pneumatic roller</td>
<td>63</td>
</tr>
<tr>
<td>production rates</td>
<td>302</td>
</tr>
<tr>
<td>pusher units</td>
<td>304</td>
</tr>
<tr>
<td>remote-controlled compactor</td>
<td>63</td>
</tr>
<tr>
<td>rolling resistance</td>
<td>282-285</td>
</tr>
<tr>
<td>segmental shear roller</td>
<td>62</td>
</tr>
<tr>
<td>sheepsfoot roller</td>
<td>62</td>
</tr>
<tr>
<td>sheet piling</td>
<td>238-239</td>
</tr>
<tr>
<td>speed factors</td>
<td>287</td>
</tr>
<tr>
<td>tamping-foot roller</td>
<td>62</td>
</tr>
<tr>
<td>trench boxes</td>
<td>204</td>
</tr>
<tr>
<td>trenching</td>
<td>208</td>
</tr>
<tr>
<td>variable time operations</td>
<td>281</td>
</tr>
<tr>
<td>water trucks</td>
<td>62</td>
</tr>
<tr>
<td>Excavation quantities</td>
<td>147-150</td>
</tr>
<tr>
<td>mass diagrams</td>
<td>146</td>
</tr>
<tr>
<td>take-off sheet</td>
<td></td>
</tr>
<tr>
<td>Excavators, production rates</td>
<td>303</td>
</tr>
<tr>
<td>Existing elevations</td>
<td></td>
</tr>
<tr>
<td>computer estimating</td>
<td>519-520</td>
</tr>
<tr>
<td>Experience, importance of</td>
<td>23</td>
</tr>
<tr>
<td>Exterior dimensions, wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>217-218</td>
</tr>
<tr>
<td>Factors</td>
<td></td>
</tr>
<tr>
<td>bucket payload</td>
<td>511</td>
</tr>
<tr>
<td>coefficient of friction</td>
<td>289</td>
</tr>
<tr>
<td>equipment load</td>
<td>183-184</td>
</tr>
<tr>
<td>hourly machine cost</td>
<td>310-311</td>
</tr>
<tr>
<td>job efficiency</td>
<td>295-296</td>
</tr>
<tr>
<td>machine repair</td>
<td>312-313</td>
</tr>
<tr>
<td>rolling resistance</td>
<td>283</td>
</tr>
<tr>
<td>shrink/swell</td>
<td>177-178</td>
</tr>
<tr>
<td>trench width</td>
<td>205</td>
</tr>
<tr>
<td>Federal government contracts, changed costs</td>
<td>9</td>
</tr>
<tr>
<td>Fencing jobs</td>
<td>31</td>
</tr>
<tr>
<td>Field distance</td>
<td>199</td>
</tr>
<tr>
<td>Field testing, soil density</td>
<td>60</td>
</tr>
<tr>
<td>Field visit</td>
<td>15</td>
</tr>
<tr>
<td>Fill</td>
<td></td>
</tr>
<tr>
<td>encasement pipe</td>
<td>207-208</td>
</tr>
<tr>
<td>imported</td>
<td>28</td>
</tr>
<tr>
<td>providing from spoil</td>
<td>251</td>
</tr>
<tr>
<td>soil classifications</td>
<td>47</td>
</tr>
<tr>
<td>topsoil</td>
<td>187</td>
</tr>
<tr>
<td>trench</td>
<td>206</td>
</tr>
<tr>
<td>Fill areas, calculating</td>
<td>90</td>
</tr>
<tr>
<td>Fill depth, total, formula</td>
<td>194</td>
</tr>
<tr>
<td>Fill volume</td>
<td></td>
</tr>
<tr>
<td>calculations worksheet</td>
<td>112</td>
</tr>
<tr>
<td>depth calculations</td>
<td>110-111</td>
</tr>
<tr>
<td>formula</td>
<td>107-108</td>
</tr>
<tr>
<td>Final exam, book</td>
<td></td>
</tr>
<tr>
<td>costs and final bid</td>
<td>415-513</td>
</tr>
<tr>
<td>sample take-off</td>
<td>317-414</td>
</tr>
<tr>
<td>Final grade line</td>
<td>127</td>
</tr>
<tr>
<td>Fine-grained soils</td>
<td>54</td>
</tr>
<tr>
<td>Finish grade</td>
<td>127, 266</td>
</tr>
<tr>
<td>Finish profiles, balancing cut and fill</td>
<td>266-267</td>
</tr>
<tr>
<td>Fixed costs (overhead)</td>
<td>313-316</td>
</tr>
<tr>
<td>Fixed time, definition</td>
<td>291</td>
</tr>
<tr>
<td>Flat-bottom ditches</td>
<td>202</td>
</tr>
<tr>
<td>Flooding, jobsite</td>
<td>33</td>
</tr>
<tr>
<td>Flowline elevation</td>
<td>207</td>
</tr>
<tr>
<td>Footing, volume</td>
<td>27</td>
</tr>
<tr>
<td>Foundation, basement</td>
<td>213</td>
</tr>
<tr>
<td>Formula book</td>
<td>17</td>
</tr>
<tr>
<td>area</td>
<td>151</td>
</tr>
<tr>
<td>area, circle</td>
<td>129-206</td>
</tr>
<tr>
<td>area, job site</td>
<td>190</td>
</tr>
<tr>
<td>area, oblique triangle</td>
<td></td>
</tr>
<tr>
<td>area, using compensating lines</td>
<td></td>
</tr>
<tr>
<td>area, using planimeter</td>
<td></td>
</tr>
<tr>
<td>area, using the scale factor</td>
<td></td>
</tr>
<tr>
<td>area, using Trazooidal Rule</td>
<td></td>
</tr>
<tr>
<td>average area</td>
<td>140</td>
</tr>
<tr>
<td>average depth</td>
<td>89, 114</td>
</tr>
<tr>
<td>average depth, cut or fill</td>
<td>118</td>
</tr>
<tr>
<td>average end area method</td>
<td></td>
</tr>
<tr>
<td>bid price</td>
<td>216</td>
</tr>
<tr>
<td>break-even point</td>
<td>274</td>
</tr>
<tr>
<td>brush volume</td>
<td>27</td>
</tr>
<tr>
<td>center of mass</td>
<td></td>
</tr>
<tr>
<td>change in depth, import/export</td>
<td></td>
</tr>
<tr>
<td>circumference, circle</td>
<td>151</td>
</tr>
<tr>
<td>circumference, contour line</td>
<td>122</td>
</tr>
<tr>
<td>compactor production rate</td>
<td></td>
</tr>
<tr>
<td>cone, volume</td>
<td>219</td>
</tr>
<tr>
<td>contour area</td>
<td>122</td>
</tr>
<tr>
<td>cross-section method</td>
<td>101</td>
</tr>
<tr>
<td>cross-section method, volume</td>
<td>90</td>
</tr>
<tr>
<td>cubic feet to cubic yards</td>
<td>98</td>
</tr>
<tr>
<td>cubic yard costs</td>
<td></td>
</tr>
<tr>
<td>cut and fill under a structure, total</td>
<td>197</td>
</tr>
<tr>
<td>cut depth, total</td>
<td>193</td>
</tr>
<tr>
<td>depreciation</td>
<td>309</td>
</tr>
<tr>
<td>determining scale factors</td>
<td></td>
</tr>
<tr>
<td>diameter, circle</td>
<td></td>
</tr>
<tr>
<td>distance TO SHS</td>
<td></td>
</tr>
<tr>
<td>end area excavation, volume</td>
<td></td>
</tr>
<tr>
<td>fill depth, total</td>
<td>194</td>
</tr>
<tr>
<td>fill volume</td>
<td>107</td>
</tr>
<tr>
<td>foliage volume</td>
<td>27</td>
</tr>
<tr>
<td>frustum of a pyramid</td>
<td></td>
</tr>
<tr>
<td>grade resistance</td>
<td></td>
</tr>
<tr>
<td>horizontal change, bank slope</td>
<td>72</td>
</tr>
<tr>
<td>hourly tire cost</td>
<td>312</td>
</tr>
<tr>
<td>load factor</td>
<td>184</td>
</tr>
<tr>
<td>machine production</td>
<td>295</td>
</tr>
<tr>
<td>machine repair costs</td>
<td>312</td>
</tr>
<tr>
<td>mound volume</td>
<td>158</td>
</tr>
<tr>
<td>outside corners, number of</td>
<td></td>
</tr>
<tr>
<td>planimeter constant</td>
<td>134</td>
</tr>
<tr>
<td>point elevation</td>
<td>107</td>
</tr>
<tr>
<td>prismoidal volume</td>
<td>99</td>
</tr>
<tr>
<td>production rates</td>
<td>301</td>
</tr>
<tr>
<td>pusher units</td>
<td>304</td>
</tr>
<tr>
<td>Pythagorean theorem</td>
<td>242</td>
</tr>
<tr>
<td>rimpull</td>
<td>243</td>
</tr>
<tr>
<td>rolling resistance</td>
<td>283</td>
</tr>
<tr>
<td>run, slope</td>
<td>216</td>
</tr>
<tr>
<td>scale factor</td>
<td>139</td>
</tr>
<tr>
<td>shaft volume</td>
<td>245</td>
</tr>
<tr>
<td>shrink/swell factors</td>
<td>182</td>
</tr>
</tbody>
</table>
Spoil volume 251
Tangential angle 258
topsoil volume in CY 190
total cut/fill .. 114
total depth .. 114
total resistance 285
tree height .. 27
tree volume ... 27
trench volume 181
triangle, volume 117
V-notch .. 117
volume .. 12
volume of equal depth contours 122
volume of grid CY 82
weight on drive wheels 289-290
Four-wheeled tractor, weight on drive wheels .. 289
Friction, effect of rolling resistance 282
Frustrum of a pyramid 98
Fuel costs ... 312

G

Gear ratio to machine speed 288
General contractor bid 415
General plan sheet project, sample 941
storm sewer system, sample 392
General quantities 7
General specifications, sample 318-319
Geology, study of 43
Government contracts, changed conditions 9
Gravel excavator 203
Grading effect on cycle time 291
finish .. 266
Grade assistance, braking power needed 287
Grade bank contour 72
Grade beams, volume 244-246
Grade line .. 127
Grade resistance calculating 286, 288-399
definition ... 282, 295
formula ... 286
negative .. 287
Grader, motor, production rates 297-308
Grades before & after elevation 77-78
Grades, soil .. 53-55
Granular soils .. 50
Graph paper, selecting grid size 159
Graphic of contour 75-76
Graphing, cut/fill areas 130
Gravel .. 44
definition, USCS 52
pea ... 44
Gravel road, coefficient of traction 289
Green areas balancing the site 528-530
estimating .. 920
Green heads .. 29
Grid overlay .. 78-79
Grid square corners calculating depth 110-111
calculating missing 116-118
identifying .. 104, 110
inside/outside measurements 105-106
interpolating elevations 82, 86-88
Grid system area take-off, basement 227-228
calculating excavation volumes 923
calculating volume 81-82
drawing grid squares 78-79
estimating with 78
identifying grids 79
interpolating elevations 82, 86-88
reading contour lines 80
scale ... 80
subcontour lines 80

take-off, sample 321-324
worksheet .. 103
Gross vehicle weight (GVW) on drive wheels 289
Ground lines, cross section 130
Ground loss .. 181-182
Ground slope, determining 198
Ground water, locating with 539
Grubbing vegetation 25-27, 32-33
Gumbo ... 45

H

Half slope line (HS) 214
Hardpan, definition 44
Haul distance asymmetrical borrow pit 278-279
average .. 272, 280
calculating .. 271-272, 277-279
center of mass 266
finding center of mass 270-272
improvements to shorten computation 272, 274
mass diagram .. 149
minimizing .. 267-270
reducing ... 267-270
symmetrical borrow pit 277-278
Haul road calculating productivity 296-297
specifications .. 297
Haul road condition effect on cycle time 292-292
effect on rolling resistance 283
Haul trips, estimating 182-184
Haul unit cycle time excavator 303
pusher units ... 304
Hauling units, production rates 303
Heads, marker .. 30
High-compressibility soil 54
Highway conditions, site 32
Hill volume, calculations 118-119
Holding tank excavation, estimating 211
Horizontal baseline 279
Horizontal data, lakes and ponds 71-72
Horizontal datum 65
Horizontal distance plan distance run 199
198
Horizontal scale calculating scale factor 139
cross section ... 128
Horizontal slice method 118-119
Horsepower altitude, effect on 290-291
available, equipment 287
Hourly cost factors, machine 310-311
operating cost, machine 316
HS (half slope line) 214

I

Ice, coefficient of traction 289
Identifying grid squares 79
Impact-hammer compactor 63
Import, mass diagram 149
Improvements, break-even point 272, 274

Inches to decimal feet, conversion 13
Indirect overhead items 37-38
Inside corners, basement 219
Inside grid elevation 105-106
Inside ramp .. 220
Inside-to-outside dimensions, wall 217-218
Instructions, plans and specs 9
Insurance, equipment 310-311
Interest, on equipment 310-311
Interim spoil .. 251
stockpile, shrink and swell 252
Interior dimensions, wall 217-218
Interlocking sheet piles 238
Intermediate contour lines 70
Intermediate points, finding 86
Internet, software requirements 516
Interpolating elevations 82-88
accuracy of .. 84-85
Interval, contour lines 70
Inventory counter 120
Irregular shapes, area of 151
ITT (interest, insurance, taxes) 310-311

J

Job costs, overhead 35-36
Job difficulty, evaluating 24-25
Job efficiency factors, chart 296
Job, planning cut and fill 267-270
Jobsite accessibility, evaluating 23
analyzing conditions 22-23
balance borrow/spoil between jobs 253
formula for area 190
irregular shaped 151
surface conditions 25

K

Knox soil ... 44

L

Labor, local ... 30
Lake, finding volume of 168-170
Landslide, soil .. 47
LCY (loose cubic yards) 178-179
Legal fees, overhead 313
Legends, top maps 76
Light table ... 13
Lines contour .. 68-72
plotting elevation 130
zero ... 90-94
Liquid limit test 50-51
Load factors calculating resistance 298-299
speed and gear 300
Loader, production rates 303
Loading the bid 316
Loan ... 45, 47
Local soil information, importance of 43
Logs barricade ... 31
boring ... 46-47

Buy this complete title here: https://go.gl/aJ8W8n
Estimating Excavation

Machine

average hourly operating cost .. 315
hourly cost summary sheet .. 531
life span .. 475-510
operating costs, sample bid ... 76
production .. 293-296
retarder chart .. 511
selection, sample bid ... 420
speed, effect on costs ... 287
speed, weight effects ... 287-528
truck value .. 309
Machine owner/operator cost ... 309-316
chart .. 315
summary .. 314
Machine power
description .. 282
grade resistance on rolling resistance 283-284
Maintenance, machine, effect on rolling resistance 282
Management, overhead ... 313
Manhole calculations, bid ... 419
sample bid .. 419
template, computer generated ... 538
Manhole shield .. 210
Manufacturer data
operating manual and spec sheet ... 287
percentage of GYW on drive wheels 289
travel time .. 301
Map roller .. 120
Maps
aerial .. 18
contour ... 65, 71
locating and using ... 18
planimetric .. 65
problem areas, earthwork software 537, 539
scale .. 121
date .. 127
symbols .. 76
topographic .. 65
using to verify take-off ... 526-527
Markers, survey type ... 29-30
Mass, center of ... 265-266
Mass diagram ... 143, 147-150
balance points ... 149
cross-section, software .. 536
equipment zones ... 150
Material
borrow, matching with site .. 250
effect on machine production ... 293
jisole storage ... 290
selling ... 30
spoil and borrow ... 249
thickness(TM) ... 197
weight in place ... 184
weights, chart ... 183
Measurements
control planes ... 120
converting scale ... 20
degrees, minutes, seconds ... 66
determining scale units ... 83
finding intermediate points ... 86
understanding scale ... 18-19
using arc section ... 135, 137-138
using measuring strip ... 134-136
using planimeter .. 132-134
wall dimensional systems ... 217-218
Measuring, cut/fill areas ... 130
Measuring tools
equipment's scale .. 86
rubber band ... 85-86
strip .. 134-136
Merging drawings, computer estimating 533
Middle section, stockpile ... 253-255
Midpoints, horizontal & vertical ... 279
Minute measurements .. 66
Mobilization costs ... 417
Modified Proctor Test ... 56
Moisture content, soil
effect on project cost .. 45
plasticity .. 51
problems .. 65
shrink/swell factor ... 177
testing .. 56
Moisture density curve ... 56-57
Monotonic soils ... 183
Monuments ... 73-74
Motor grader
haul road maintenance .. 299
production rates ... 307-308
Mound, finding volume ... 152-158
Mountain contour lines ... 70
Mouse take-off ... 516
Muck .. 45
Mud .. 45
N
Naming areas, computer estimating 523, 524
National Geodetic Vertical Datum .. 66
Natural-Aspirated engine, altitude effect on 290
Net cut/fill depths ... 193-195
Net earthwork volumes, calculating 193-197
Night operations, Peak, Peak .. 286
Notes, plans and specs .. 9
Nuclear density gauge .. 60
O
Oblique triangle
finding area ... 153, 241
finding height and base .. 153-154
volume using area and depth .. 154
Obstructions, jobsite .. 24
Office building, sample ... 339-340
bid calculations ... 472-473
bid details .. 420
excavation details ... 411-413
Office expenses ... 37-38
Operating costs
equipment ... 282, 287, 293
fuel and lubricants ... 312
repairs ... 312
tires .. 312
Operating gear, effect on available power 287-288
Operating speed, equipment ... 300
Optimum moisture content, soil ... 56-57
Organic matter, defined ... 52
Organic soils ... 45, 47
OSHA, slope safety .. 205
Outline work .. 15-16
Outside
corners, basement ... 219
grid elevation ... 105-106
ramp .. 240
Outside-to-outside dimensions .. 217-218
Overcut
payment clause ... 210
trenching .. 208-210
Overfilling, plans and specs .. 11
Overhead
calculating ... 313-316
direct .. 35
indirect .. 37-38
machine cost per hour ... 316
sample bid ... 420, 474
Ownership costs ... 309-316
depreciation ... 309
insurance .. 310-311
interest .. 310-311
overhead ... 313
Owning and operating costs, equipment 309-316
estimating ... 281
sample bid ... 421
P
Paper contractors ... 415
Paper, graph .. 130
selecting grid size .. 159
Parallelogram, area formula .. 151
Parking lot
elevation points .. 522-523
estimating excavation ... 326
Pay yards ... 185
Payload ... 302
bucket, factors ... 511
truck .. 303-304
Payment for overcut ... 210
services .. 10
Payroll, overhead ... 313
PDF format .. 516
Pebbles ... 44
Percentage of GYW, drive wheels ... 289
Percolation test ... 49-50
Performance records, importance .. 282
Permanent benchmarks (BM) ... 74
Permits ... 10
road right-of-way .. 32
Personnel, planning for ... 281
Phone lines, marking .. 29-30
Photographs, document site .. 22
Pick-up line ... 75-76
Pier
net bell volumes ... 247
shovel drilling chart .. 246
volume calculations ... 244-246
Pipe
bedding, undercutting for .. 11
calculations, sample bid ... 458
wall thickness, importance of ... 207
Plan and profile, take-off method .. 125-132
Plan and profile sheets
earthwork design ... 128-129
examples ... 126-127
road project ... 275
sample ... 369, 377-380
Samples
soil .. 56
topsoil 189
Sanity cone test 60
Sand, definition 44
USCS 52
Sand surface, coefficient of traction ... 289
Sanitary sewer lines 327-332, 375-391
plats and profile sheets 377-388
Scale
actual vs. plan dimensions 276
choosing 128
determining 18
distance, graph 160-161
grid system 40
horizontal 128, 139
quad sheets 66
setting, computer estimating 518
using to interpolate elevations 82-85
determination of scale unit 82-83
vertical factors 128, 139
Scale factor 139
formulas for 18-19
Scaling elevations 321
Scheduling, equipment 281
Scope of work
bid summary 422
reviewing 416-417
Scaper, rolling resistance 283-284
Sea level elevation 66
Second measurements 66
Section line 75-76
Security, jobsite 31
Segmented-pad roller 62
Self-propelled compactors 96
average operating speed 306
Semicircle
center of mass 272-273
haul distance for 272
Setting scale, computer estimating 518
Sewage discharge 49
Sewer lines, jobsite 38
Shaft, volume 245
Shale 45
Sheepfoot roller 62
average operating speed 294-296
Shoveling 238-239
advantages/disadvantages 239
Shield, manhole 210
Shop building footing, sample bid 72
shop details 420
calculations 476-481
evacuation details 407-410
specifications 336-338
Shoring, trench slopes 204
Shortcut
calculating quantities 109-116
total cut/fill, formula 114
Shrink/swell factors 175-180
apply to fill 269-270
conversion chart 180
customize using materials weights 183
formula for 182
stockpiled topsoil 252
Shrinkage, embankment soil 147-148
Sidewalk, elevation points 522-523
Silt
definition, USCS 52
Silt fence 33
Site plan, sample 342
Site problems, anticipating 22-23
Site size 30
Site visit
checklist 39-41
estimating process 15
evaluate traffic control 30
importance of 21-22
locate utility lines 28-30
make checklist 22
sample project 32-35
soil conditions 28
taking soil samples 48
temporary utility needs 29
Size, site 30
Skills needed, estimating 5
Slab, effects on zero line 93-94
Slope
angles, selecting 212
calculating degree of 198, 200
calculating volume of topsoil 199-201
effect on grade resistance 285
run and rise, basement perimeter 212
run/rise ratio 198
safety 204-205
total run formula 216
Slope line 197
drainage 201
estimating length, chart 200
field distance 199
Slopes
bank, safe 48
lakes and ponds 72
roadway 201
Snow, coefficient of traction 289
Software
computer requirements 516
Internet requirements 516
Soil
allowable bank slopes 48
basic constituents 52
calculating dry density 57-59
characteristics 47
classifications 43-45
course grained 53
cohesive 55
compaction 55-60
compaction testing 61
density 55
determining moisture content 51
evacuations, dissimilar types 236-237
expansion/compression factors 529
field testing 46-50
fine grained 54
granular 55
hauling, cost of 267-270
lab testing 50-51
liquid limit test 50
loading, cost of 267
moisture, importance of 45
monotonic 183
movement 64
optimum moisture content 56
plastic limit test 51
plasticity index 51
properties of 43-64
shrink/swall factors 177
site samples 48-49
stability 47
states 177-178
stockpiling 28, 31
type, matching 250
types, maximum safe slope 204
unstable 28
USCS grading 53-55
weight charts, obtaining 183
Soil borings
computer estimating 531
excavation with dissimilar soils 236-237
locating ground water 539
Soil Conservation Service (USCS) 43-44
Soils engineer, compaction testing 61
Special conditions
reading plans and specs 9
Special quantities 7
Site conditions
compaction requirements 59, 61
haul road 297-298
notes, special conditions 9
reading 8
sample basement excavation 233
sample project 318-319
topsoil quantities 189-190
understanding measurements 18
Speed, machine
effect on operating cost 287
Spoil ... 249-263
Stabilizing between jobs 253
definition 249
disposal 250-251
dump site 250
interim 251
shrink and swell 252
stockpiles 252
Square, area formula 151
Stability, soil 47
Staking project
contractor’s responsibility 10
roadwork elevations 129
Standard drawings
office building 411
road sections 370-371
sanitary sewer lines 386
shop building footing 407-408
storm sewer system 393-395
topsoil excavation 367
Standard life span, equipment 309
Standard Proctor, compaction percent . 180
Standard Proctor Test 56
Stations
beginning and end 142
calculating volume 142
between 140-142, 147-148
intervals, alternative labels for ... 275
regions of absent work 142
surveying 128-129
Steep slopes, equipment for 25
Stockpile
influences, soil pile behavior 261
interim spoil 252
locations, topsoil 188
selling 252
Stockpile volume
calculation sheet 260
diode sections 255
height, reverse angle method 256-259
height, unknown 256-260
middle section 253-255
set area 261-263
Storage, jobsite 30
Storage sewer lines 332-335
calculations, sample bid 453-456
jobsite 28
plan and profile sheets 396-398
plan sheets and calculations 392-406
Stream beds, jobsite 28, 33
Strip, measuring 134-136
U.S. Geological Survey (USGS) 66
contour interval listing 70
maps 18
Undercutting 10-11
Underground structure excavation, estimating 211
Unified Soil Classification System (USCS) 52
symbols and descriptions 54
Unit, scale 82-83
Unknown points, finding 86-88
Unstable slopes, equipment for 25
Unstable soil 28
Uphill travel, total resistance 285
Usable power 288
Usable topsoil 187
Utilities
overhead 313-316
undercutting for 11
Utility easements 43
Utility lines
excavating for 208
locating 9, 28, 33
marking 29-30
production cost calculations 459-463
set in concrete 207
Utility trench, sample bid 205
calculations 442-446
costs 418

V
V-in/V-out calculations, base excavation 231-232
formulas for 229
Vandalism, jobsite 31
Variable time, definition 291-292
Vee ditches 202
Vegetation, jobsite 25-26
Vertical
center of mass 274
datum 65
distance, rise 198
wall excavations 222-223
Vertical scale
calculating scale factor 139
cross section 128
Vibrating-roller compactor 63
Visit, site 22
Void ratio 59
Volume
average area 140-142
average end area 100
average end area method 97, 100
hills 245-248
cone 219-221, 255, 263
contour area 122-123
contour slices 118-119
coordinate system, using 159-167
cross-section method 88-90, 101
cut and fill, total 114
decay 126-262
decay area calculations, using 140-142
decay areas, combined 255
equivalent area, calculating by 217,225
formula 12, 82
formula, cross section method 90
formulas for solids 143, 148
frustum of a pyramid 98
grade beams 244-248
hill 118-119
horizontal slice method 118-119
interpolating elevations 82
irregular areas 152
irregular shapes 167
jobsite vegetation 27
mound 152-158
mound, using average depth 154-158
mound, using compensating lines .. 166
net cut 196
piers 244-248
pond 118-119
prism 255-262
prismatic formula method 99
ramp 243
replaced topsoil 151-192
roadwork, mass diagram 143, 147-148
sample basement excavation 228-234
slope outside basement wall 213
sloping wall basement
excavation 223-227
small lake 168-170
soil 251
stockpile 253-255
stockpile of set area 261-263
stockpile of unknown height 256-260
striped topsoil 189-190
topo maps, using 159
topsoil, slope 199-201
total cut/fill, formula 114
tracking overcut 208-210
trapezoidal prism 100
Trapezoidal Rule, using 167-175
trench bedding 206-207
trench, formula 181
triangular area 116-117
vertical wall base
excavations 222-223
worksheet 104
Wall dimensions, basement 217-218
Water
drainage 63-64
jobsite 24, 33
problems 63
Water lines, marking 29-30
Water table, jobsite 28, 63-64
Water trucks 62
Weathered rock 44
Weight
in-place material 184
machine, effect on speed 287-288
Weight on wheels
calculating 286
drive wheels, formula 289-290
loaded/unloaded 298
Wheel equipment
efficiency factors 296
rim pounds of pull 287
rolling resistance factors 283
Wheel scrapers, grade resistance 286
Work boundary 91-92
Work space
basement excavation 211-213
trenching overcut volumes 208-210
Workers, hiring local 30
Working elevation 193
Worksheet
arc section take-off 137-138
area/volume, compensating lines 161, 164-165
areas of oblique triangles 155-158
cut/fill prism calculations 112
equal depth contour volume 121
existing contours 104
grid square and volume 103
grid square depth calculations 110-111
measured horizontal distance 105-106
proposed contours 104
shortcut for cut/fill 115
take-off 102
Trapezoidal Rule 170-173
volume calculations for lake 175
Worksites, visit 15
Worm test 51
Worm, soil 47

X, Y, Z
Yards, pay 185
Yellow heads 29
Zero line
adjust for topsoil stripping 92
adjust for slab or paving 93
cut and fill quantities 109
determining path 94-95
locating 90-91
work boundary 91
Practical References for Builders

Excavation & Grading Handbook Revised
The foreman’s, superintendent’s and operator's guide to highway, subdivision and pipeline jobs: how to read plans and survey stake markings, set grade, excavate, compact, pave and lay pipe on nearly any job. Includes hundreds of informative, on-the-job photos and diagrams that even experienced pros will find invaluable. This new edition has been completely revised to be current with state-of-the-art equipment usage and the most efficient excavating and grading techniques. You’ll learn how to read topo maps, use a laser level, set crows feet, cut drainage channels, lay or remove asphaltic concrete, and use GPS and sonar for absolute precision. For those in training, each chapter has a set of self-test questions, and a Study Center CD-ROM included has all 250 questions in a simple interactive format to make learning easy and fun. 512 pages, 8 ½ x 11, $42.00

CD Estimator
If your computer has Windows™ and a CD-ROM drive, CD Estimator puts at your fingertips over 135,000 construction costs for new construction, remodeling, renovation & insurance repair, home improvement, framing & finish carpentry, electrical, concrete & masonry, painting, and plumbing & HVAC. Monthly cost updates are available at no charge on the Internet. You’ll also have the National Estimator program — a stand-alone estimating program for Windows™ that Remodeling magazine called a “computer wiz,” and Job Cost Wizard, a program that lets you export your estimates to QuickBooks Pro for actual job costing. A 60-minute interactive video teaches you how to use this CD-ROM to estimate construction costs. And to top it off, to help you create professional-looking estimates, the disk includes over 40 construction estimating and bidding forms in a format that’s perfect for nearly any Windows™ word processing or spreadsheet program. CD Estimator is $108.50

Markup & Profit: A Contractor’s Guide, Revisited
In order to succeed in a construction business, you have to be able to price your jobs to cover all labor, material and overhead expenses, and make a decent profit. But calculating markup is only part of the picture. If you’re going to beat the odds and stay in business — profitably, you also need to know how to write good contracts, manage your crews, work with subcontractors and collect on your work. This book covers the business basics of running a construction company, whether you’re a general or specialty contractor working in remodeling, new construction or commercial work. The principles outlined here apply to all construction-related businesses. You’ll find tried and tested formulas to guarantee profits, with step-by-step instructions and easy-to-follow examples to help you learn how to operate your business successfully. Includes a link to free downloads of blank forms and checklists used in this book. 336 pages, 8 ½ x 11, $47.50

Construction Estimating Reference Data
Provides the 300 most useful manhour tables for practically every item of construction. Labor requirements are listed for sitework, concrete work, masonry, steel, carpentry, thermal and moisture protection, doors and windows, finishes, mechanical and electrical. Each section details the work being estimated and gives appropriate crew size and equipment needed. Includes a CD-ROM with an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program, plus an interactive multimedia video that shows how to use the disk to compile construction cost estimates. 432 pages, 11 x 8 ½, $39.50

National Electrical Estimator
This year’s prices for installation of all common electrical work: conduit, wire, boxes, fixtures, switches, outlets, loadcenters, panelboards, raceway, duct, signal systems, and more. Provides material costs, manhours per unit, and total installed cost. Explains what you should know to estimate each part of an electrical system. Includes a free download of an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program. An interactive multimedia video that shows how to use the software to compile electrical cost estimates is free at www.costbook.com. 552 pages, 8 ½ x 11, $72.75. Revised annually

Paper Contracting: The How-To of Construction Management Contracting
Risk, and the headaches that go with it, have always been a major part of any construction project — risk of loss, negative cash flow, construction claims, regulations, excessive changes, disputes, slow pay — sometimes you’ll make money, and often you won’t. But many contractors today are avoiding almost all of that risk by working under a construction management contract, where they are simply a paid consultant to the owner, running the job, but leaving him the risk. This manual is the how-to of construction management contracting. You’ll learn how the process works, how to get started as a CM contractor, what the job entails, how to deal with the issues that come up, when to step back, and how to get the job completed on time and on budget. Includes a link to free downloads of CM contracts legal in each state. 272 pages, 8 ½ x 11, $55.50

Pipe & Excavation Contracting Revised
This popular manual has been updated and improved to bring it more current with modern earthmoving and trenching equipment, refined excavation techniques, stricter safety rules, and improved materials. Shows how to read plans and compute quantities for both trench and surface excavation, figure crew and equipment productivity rates, estimate unit costs, bid the work, and get the bonds you need. Learn how to choose the right equipment for each job, use GPS, how to lay all types of water and sewer pipe, work on steep slopes or in high groundwater, efficiently remove asphalt and rock, and the various pipe, joints and fittings now available. Explains how to switch your business to excavation work when you don’t have pipe contracts, and how to avoid the pitfalls that can wipe out your profits on any job. 328 pages, 8 ½ x 11, $35.00

Basic Engineering for Builders
This book is for you if you’ve ever been stumped by an engineering problem on the job, yet wanted to avoid the expense of hiring a qualified engineer. Here you’ll find engineering principles explained in non-technical language and practical methods for applying them on the job. With the help of this book you’ll be able to understand engineering functions in the plans and how to meet the requirements, how to get permits issued without the help of an engineer, and anticipate requirements for concrete, steel, wood and masonry. See why you sometimes have to hire an engineer and what you can undertake yourself: surveying, concrete, lumber loads and stresses, steel, masonry, plumbing, and HVAC systems. This book is designed to help you, the builder, save money by understanding engineering principles that you can incorporate into the jobs you bid. 400 pages, 8 ½ x 11, $39.50

National Construction Estimator
Current building costs for residential, commercial, and industrial construction. Estimated prices for every common building material. Provides manhours, recommended crew, and gives the labor cost for installation. Includes a free download of an electronic version of the book with National Estimator, a stand-alone Windows™ estimating program. An interactive multimedia video that shows how to use the software to compile construction cost estimates is free at www.costbook.com. 672 pages, 8 ½ x 11, $72.50. Revised annually

Construction Contract Writer
Relying on a “one-size-fits-all” boilerplate construction contract to fit your jobs can be dangerous — almost as dangerous as a handshake agreement. Construction Contract Writer lets you draft a contract in minutes that precisely fits your needs and the particular job, and meets both state and federal requirements. You just answer a series of questions — like an interview — to construct a legal contract for each project you take on. Anticipate where disputes could arise and settle them in the contract before they happen. Include the warranty protection you intend, the payment schedule, and create subcontracts from the prime contract by just clicking a box. Includes a feedback button to an attorney on the Craftsman staff to help should you get stumped — No extra charge. $99.95. Download the Construction Contract Writer at: http://www.constructioncontractwriter.com

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com

Square-foot costs for residential, commercial, industrial, military, schools, greenhouses, churches and farm buildings. Includes important variables that can make any building unique from a cost standpoint. Quickly work up a reliable budget estimate based on actual materials and design features, area, shape, wall height, number of floors, and support requirements. Now includes easy-to-use software that calculates total in-place cost estimates. Use the regional cost adjustment factors provided to tailor the estimate to any job site in the U.S. Then view, print, email or save the detailed PDF report as needed. Includes CD-ROM for appraisals. 280 pages, 8½ x 11, $63.00. Revised annually

Masonry & Concrete Construction Revised

Shows on-site preplanning and layout through the construction of footings, foundations, walls, fireplaces and chimneys. An added appendix on safety regulations, with a condensed OSHA reference. Improved bid-winning estimating techniques. The emphasis is on integrating new techniques and materials with tried-and-true methods. Includes information on cement and mortar types, mixes, coloring agents and additives, and suggestions on when, where and how to use them; calculating footing and foundation loads, with reference tables and formulas; forming materials and systems; pouring and reinforcing concrete slabs and flatwork; block and brick wall construction, with seismic requirements; crack control, masonry veneer construction, brick floors and pavements, design considerations and materials; cleaning, painting and repairing all types of masonry. 304 pages, 8½ x 11, $37.75

Moving to Commercial Construction

In commercial work, a single job can keep you and your crews busy for a year or more. The profit percentages are higher, but so is the risk involved. This book takes you step-by-step through the process of setting up a successful commercial business: finding work, estimating and bidding, value engineering, getting through the submittal and shop drawing process, keeping a stable work force, controlling costs, and promoting your business. Explains the design/build and partnering business concepts and their advantage over the competitive bid process. Includes sample letters, contracts, checklists and forms that you can use in your business, plus a CD-ROM with blank copies in several word-processing formats for both Mac™ and PC computers. 256 pages, 8½ x 11, $42.00

Construction Forms for Contractors

This practical guide contains 78 practical forms, letters and checklists, guaranteed to help you streamline your office, organize your job sites, gather and organize records and documents, keep a handle on your subs, reduce estimating errors, administer change orders and lien issues, monitor crew productivity, track your equipment use, and more. Includes accounting forms, change order forms, forms for customers, estimating forms, field work forms, HR forms, lien forms, office forms, bids and proposals, subcontracts, and more. All are also on the CD-ROM included, in Excel spreadsheets, as formatted Rich Text that you can fill out on your computer, and as PDFs. 360 pages, 8½ x 11, $48.50

Greenbook Standard Specifications for Public Works Construction 2012

The Greenbook gives approved standards for all types of public works construction — from the depth of paving on roads to the adhesive used on pavement markers. It standardizes public works plans and specs to provide guidelines for both cities and contractors so they can agree on construction practices used in public works. The book has been adopted by over 200 cities, counties, and agencies throughout the U.S. The 2012 edition is the 16th edition of this complete reference, providing uniform standards of quality and sound construction practice easily understood and used by engineers, public works officials, and contractors across the U.S. Includes hundreds of charts and tables. 550 pages, 8½ x 11, $84.50

Builder’s Guide to Accounting Revised

Step-by-step, easy-to-follow guidelines for setting up and maintaining records for your building business. This practical guide to all accounting methods shows how to meet state and federal accounting requirements, explains the new depreciation rules, and describes how the Tax Reform Act can affect the way you keep records. Full of charts, diagrams, simple directions and examples to help you keep track of where your money is going. Recommended reading for many state contractor’s exams. Each chapter ends with a set of test questions, and a CD-ROM included FREE has all the questions in interactive self-test software. Use the Study Mode to make studying for the exam much easier, and Exam Mode to practice your skills. 360 pages, 8½ x 11, $35.50

Order online www.craftsman-book.com
Free on the Internet! Download any of Craftsman’s estimating costbooks for a 30-day free trial! www.costbook.com

Download free construction contracts legal for your state: www.construction-contract.net

- 39.50 Basic Engineering for Builders
- 35.50 Builders Guide to Accounting Revised
- 108.50 CD Estimator
- 39.50 Construction Estimating Reference Data with FREE National Estimator on a CD-ROM
- 48.50 Construction Forms for Contractors
- 42.00 Excavation & Grading Handbook Revised
- 84.50 Greenbook Standard Specifications for Public Works Construction 2012
- 47.50 Markup & Profit: A Contractor’s Guide, Revisited
- 37.75 Masonry & Concrete Construction Revised
- 42.00 Moving to Commercial Construction
- 63.00 National Building Cost Manual
- 72.50 Natl Constr Est w/FREE Natl Estimator Download
- 72.75 Natl Elec Est w/FREE Natl Estimator Download
- 55.50 Paper Contracting: The How-To of Construction Management Contracting
- 35.00 Pipe & Excavation Contracting Revised
- FREE Full Color Catalog

Prices subject to change without notice – 10-Day Money Back Guarantee

Download all of Craftsman’s most popular costbooks for one low price with the Craftsman Site License http://www.craftsmansitelicense.com

Craftsman Book Company
6058 Corte del Cedro
Carlsbad, CA 92011

24 hour order line
1-800-829-8123
Fax (760) 438-0398

In A Hurry?
We accept phone orders charged to your
☐ Visa, ☐ MasterCard, ☐ Discover or ☐ American Express

Name ____________________________
Company _________________________
Address __________________________

City/State/Zip ______________________
☐ This is a residence ☐ (In California add 7.5% tax)

Total enclosed _____________________
We pay shipping when your check covers your order in full.

Order online www.craftsman-book.com
Free on the Internet! Download any of Craftsman’s estimating costbooks for a 30-day free trial! www.costbook.com

Exp. date _________________________ Initials _________________________

Tax Deductible: Treasury regulations make these references tax deductible when used in your work. Save the canceled check or charge card statement as your receipt.

Prices subject to change without notice – 10-Day Money Back Guarantee

Download all of Craftsman’s most popular costbooks for one low price with the Craftsman Site License http://www.craftsmansitelicense.com

Buy similar Craftsman Book Co. titles here: https://www.Craftsman-Book.com